Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hopf bifurcation and bifurcation from constant oscillations to a torus path for delayed complex Ginzburg-Landau equations

dc.book.titleModern Mathematical Tools and Techniques in Capturing Complexity
dc.contributor.authorCasal, Alfonso C.
dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorStich, Michael
dc.contributor.authorVegas Montaner, José Manuel
dc.contributor.editorPardo Llorente, Leandro
dc.contributor.editorBalakrishnan, Narayanaswamy
dc.contributor.editorGil, María Ángeles
dc.date.accessioned2023-06-20T05:46:45Z
dc.date.available2023-06-20T05:46:45Z
dc.date.issued2011
dc.description.abstractWe consider the complex Ginzburg-Landau equation with feedback control given by some delayed linear terms (possibly dependent of the past spatial average of the solution). We prove several bifurcation results by using the delay as parameter. We start proving a Hopf bifurcation result for the equation without diffusion (the so-called Stuart-Landau equation) when the amplitude of the delayed term is suitably chosen. The diffusion case is considered first in the case of the whole space and later on a bounded domain with periodicity conditions. In the first case a linear stability analysis is made with the help of computational arguments (showing evidence of the fulfillment of the delicate transversality condition). In the last section the bifurcation takes place starting from an uniform oscillation and originates a path over a torus. This is obtained by the application of an abstract result over suitable functional spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipSpanish MICIIN
dc.description.sponsorshipUCM
dc.description.sponsorshipMMNL from UPM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29713
dc.identifier.isbn978-3642208522
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F978-3-642-20853-9_5
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45557
dc.language.isoeng
dc.page.final76
dc.page.initial57
dc.page.total528
dc.publication.placeBerlin
dc.publisherSpringer
dc.relation.ispartofseriesUnderstanding Complex Systems
dc.relation.projectIDFIRST (2387029)
dc.relation.projectIDMODELICO-CM (S2009/ESP-1691)
dc.relation.projectIDMTM200806208
dc.relation.projectIDResearch Group MOMAT (910480)
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordDelayed complex Ginzburg-Landau equations
dc.subject.keywordHopf bifurcation
dc.subject.keywordtorus bifurcation
dc.subject.keywordlinearization
dc.subject.keyworduniform oscillations
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleHopf bifurcation and bifurcation from constant oscillations to a torus path for delayed complex Ginzburg-Landau equations
dc.typebook part
dcterms.referencesAmann H (1990) Dynamic theory of quasilinear parabolic equations: II. reactiondiffusion systems. Diff Int Equ 3:13–75 Ambrosetti A, Prodi G (1993) A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge Aranson IS, Kramer L (2002) The world of the complex Ginzburg-Landau equation.Rev Mod Phys 74:99–143 Atay FM (ed.) (2010) Complex Time-Delay Systems. Springer, Berlin Benilan P, Crandall MG, Pazy A. Nonlinear Evolution Equations in Banach Spaces. Book in preparation Casal AC, Díaz JI (2006) On the complex Ginzburg-Landau equation with a delayed feedback. Math Mod Meth App Sci 16:1–17 Casal AC, Díaz JI, Stich M (2006) On some delayed nonlinear parabolic equations modeling CO oxidation. Dyn Contin Discret Impuls Syst A 13 (Supp S):413–426 Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65:851–1112 Erneux T (2009) Applied Delay Differential Equations. Springer, New York Ipsen M, Kramer L, Sørensen PG (2000) Amplitude equations for description of chemical reaction-diffusion systems. Phys Rep 337:193–235 Kim M, Bertram M, Pollmann M, von Oertzen A, Mikhailov AS, Rotermund HH, Ertl G (2001) Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation reaction on Pt(110). Science 292:1357–1360 Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer, Berlin Mikhailov AS, Showalter K (2006) Control of waves, patterns and turbulence in chemical systems. Phys Rep 425:79–194 Pyragas K (1992) Continuous control of chaos by self–controlling feedback. Phys Lett A 170:421–428 Schöll E, Schuster HG (eds.) (2007) Handbook of Chaos Control. Wiley-VCH, Weinheim Stich M, Beta C (2010) Control of pattern formation by time-delay feedback with global and local contributions. Physica D 239:1681–1691 Stich M, Casal AC, Díaz JI (2007) Control of turbulence in oscillatory reactiondiffusion systems through a combination of global and local feedback. Phys Rev E 76:036209,1-9 Takác P (1992) Invariant 2-tori in the time-dependent Ginzburg-Landau equation. Nonlinearity 5:289–321 Temam R (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York Vrabie II (1995) Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics 75 (2nd edn). Longman, Harlow Wolfram Research, Inc.: Mathematica edition 5.2 (2005) Wolfram Research, Inc. Champaign, Illinois Wu J (1996) Theory and Applications of Partial Differential Equations. Springer, New York
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublicationd300b4af-2d4b-46b7-a838-eff9a1de203e
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isEditorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isEditorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
156.pdf
Size:
321.4 KB
Format:
Adobe Portable Document Format