Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Partial mass concentration for fast-diffusions with non-local aggregation terms

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

We study well-posedness and long-time behaviour of aggregation-diffusion equations of the form ∂ρ∂t=Δρm+∇⋅(ρ(∇V+∇W∗ρ)) in the fast-diffusion range, 0<m<1, and V and W regular enough. We develop a well-posedness theory, first in the ball and then in Rd, and characterise the long-time asymptotics in the space W−1,1 for radial initial data. In the radial setting and for the mass equation, viscosity solutions are used to prove partial mass concentration asymptotically as t→∞, i.e. the limit as t→∞ is of the form αδ0+ρˆdx with α≥0 and ρˆ∈L1. Finally, we give instances of W≠0 showing that partial mass concentration does happen in infinite time, i.e. α>0.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections