Partial mass concentration for fast-diffusions with non-local aggregation terms

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication date

2023

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Citation
[1] H. Amann. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differential Integral Equations, 3(1):13–75, 1990. [2] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. [3] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations, 26(1-2):43–100, 2001. [4] J. M. Arrieta, A. Rodriguez-Bernal, and P. Souplet. Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(1):1–15, 2004. [5] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D, 260:5–25, 2013. [6] D. Balagué Guardia, A. Barbaro, J. A. Carrillo, and R. Volkin. Analysis of spherical shell solutions for the radially symmetric aggregation equation. SIAM J. Appl. Dyn. Syst., 19(4):2628–2657, 2020. [7] G. Barles and F. Da Lio. On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations. J. Math. Pures Appl. (9), 83(1):53–75, 2004. [8] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vázquez. Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal., 191(2):347–385, 2009. [9] A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal., 262(5):2142–2230, 2012. [10] A. Blanchet, J. A. Carrillo, and P. Laurençot. Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differential Equations, 35(2):133–168, 2009. [11] A. Blanchet, J. A. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak-Keller-Segel model in R2. Comm. Pure Appl. Math., 61(10):1449–1481, 2008. [12] A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations, pages No. 44, 32, 2006. [13] H. Brézis and A. Friedman. Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. (9), 62(1):73–97, 1983. [14] L. A. Caffarelli and X. Cabré. Fully nonlinear elliptic equations, volume 43. American Mathematical Society Providence, RI, 1995. [15] V. Calvez and J. A. Carrillo. Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. (9), 86(2):155–175, 2006. [16] J. F. Campos and J. Dolbeault. Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane. Comm. Partial Differential Equations, 39(5):806–841, 2014. [17] F. Carlson. Une inégalité. Ark. Mat. Astron. Fys., 25(1):1–5, 1934. [18] J. A. Carrillo, D. Castorina, and B. Volzone. Ground states for diffusion dominated free energies with logarithmic interaction. SIAM J. Math. Anal., 47(1):1–25, 2015. [19] J. A. Carrillo, K. Craig, and Y. Yao. Aggregation-diffusion equations: dynamics, asymptotics, and singular limits. In Active particles. Vol. 2. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., pages 65–108. Birkhäuser/Springer, Cham, 2019. [20] J. A. Carrillo and M. G. Delgadino. Free energies and the reversed HLS inequality. Unpublished. [21] J. A. Carrillo, M. G. Delgadino, J. Dolbeault, R. L. Frank, and F. Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. J. Math. Pures Appl. (9), 132:133–165, 2019. [22] J. A. Carrillo, M. G. Delgadino, R. L. Frank, and M. Lewin. Fast diffusion leads to partial mass concentration in Keller-Segel type stationary solutions. Math. Models Methods Appl. Sci., 32(4):831–850, 2022. [23] J. A. Carrillo, D. Gómez-Castro, and J. L. Vázquez. Infinite-time concentration in aggregation-diffusion equations with a given potential. J. Math. Pures Appl. (9), 157:346–398, 2022. [24] J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. Invent. Math., 218(3):889–977, 2019. [25] J. A. Carrillo, F. Hoffmann, E. Mainini, and B. Volzone. Ground states in the diffusion-dominated regime. Calc. Var. Partial Differential Equations, 57(5):Paper No. 127, 28, 2018. [26] J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math., 133(1):1–82, 2001. [27] J. A. Carrillo, R. J. McCann, and C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana, 19(3):971–1018, 2003. [28] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992. [29] F. Demengel and R. Temam. Convex functions of a measure and applications. Indiana Univ. Math. J., 33(5):673–709, 1984. [30] E. DiBenedetto. Degenerate parabolic equations. Springer Science & Business Media, 1993. [31] J. Dolbeault and B. Perthame. Optimal critical mass in the two-dimensional Keller-Segel model in R2. C. R. Math. Acad. Sci. Paris, 339(9):611–616, 2004. [32] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015. [33] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. [34] M. A. Herrero and J. J. L. Velázquez. Singularity patterns in a chemotaxis model. Math. Ann., 306(3):583–623, 1996. [35] T. Hillen and K. J. Painter. A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58(1-2):183–217, 2009. [36] D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 105(3):103–165, 2003. [37] H. Ishii. On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkcial. Ekvac., 38(1):101–120, 1995. [38] W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992. [39] V. Julin and P. Juutinen. A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation. Comm. Partial Differential Equations, 37(5):934–946, 2012. [40] N. Katzourakis. An introduction to viscosity solutions for fully nonlinear PDE with applications to calculus of variations in L∞. Springer, 2014. [41] B. Kawohl and N. Kutev. Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations. Arch. Math. (Basel), 70(6):470–478, 1998. [42] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol., 26(3):399–415, 1970. [43] I. C. Kim and H. K. Lei. Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete Contin. Dyn. Syst., 27(2):767–786, 2010. [44] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Uralceva. Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by S. Smith. [45] V. Levin. Exact constants in inequalities of the carlson type. In Dokl. Akad. Nauk SSSR, volume 59, pages 635–638, 1948. [46] P. A. Markowich and C. Villani. On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp., 19:1–29, 2000. VI Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1999). [47] M. Medina and P. Ochoa. On viscosity and weak solutions for non-homogeneous p-Laplace equations. Adv. Nonlinear Anal., 8(1):468–481, 2019. [48] N. Mizoguchi and P. Souplet. Singularity formation and regularization at multiple times in the viscous hamilton-jacobi equation. arXiv preprint arXiv:2007.12114, 2020. [49] F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101–174, 2001. [50] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2):361–400, 2000. [51] C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15:311–338, 1953. [52] A. Porretta and P. Souplet. Analysis of the loss of boundary conditions for the diffusive Hamilton-Jacobi equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 34(7):1913–1923, 2017. [53] A. Porretta and P. Souplet. Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation. J. Math. Pures Appl. (9), 133:66–117, 2020. [54] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Non-linear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling. [55] J. Siltakoski. Equivalence of viscosity and weak solutions for a p-parabolic equation. J. Evol. Equ., 21(2):2047–2080, 2021. [56] C. Sire and P.-H. Chavanis. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E (3), 66(4):046133, 23, 2002. [57] C. Sire and P.-H. Chavanis. Critical dynamics of self-gravitating Langevin particles and bacterial populations. Phys. Rev. E (3), 78(6):061111, 22, 2008. [58] P. Souplet and J. L. Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete Contin. Dyn. Syst., 14(1):221–234, 2006. [59] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006. [60] J. L. Vázquez. The Porous Medium Equation. Oxford University Press, 2006. [61] C. Villani. Optimal transport: old and new, volume 338. Springer, 2009. [62] Z. Yin. On the global existence of solutions to quasilinear parabolic equations with homogeneous Neumann boundary conditions. Glasg. Math. J., 47(2):237–248, 2005.
Abstract
We study well-posedness and long-time behaviour of aggregation-diffusion equations of the form ∂ρ∂t=Δρm+∇⋅(ρ(∇V+∇W∗ρ)) in the fast-diffusion range, 0<m<1, and V and W regular enough. We develop a well-posedness theory, first in the ball and then in Rd, and characterise the long-time asymptotics in the space W−1,1 for radial initial data. In the radial setting and for the mass equation, viscosity solutions are used to prove partial mass concentration asymptotically as t→∞, i.e. the limit as t→∞ is of the form αδ0+ρˆdx with α≥0 and ρˆ∈L1. Finally, we give instances of W≠0 showing that partial mass concentration does happen in infinite time, i.e. α>0.
Research Projects
Organizational Units
Journal Issue
Description
Keywords
Collections