Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Novel methodological and computational techniques for uncertainty quantification in diabetes short-term management models using real data

dc.contributor.authorBurgos-Simón, Clara
dc.contributor.authorCortés, Juan-Carlos
dc.contributor.authorHidalgo, José-Ignacio
dc.contributor.authorVillanueva, Rafael-J.
dc.date.accessioned2025-02-03T12:04:11Z
dc.date.available2025-02-03T12:04:11Z
dc.date.issued2022-11-25
dc.description.abstractAn open problem in diabetes clinical practice is determining where and how much insulin should be administered to a person with diabetes (PwD) and how many carbohydrates they should eat to maintain blood glucose levels at healthy safe levels. Here, we propose the use of a minimal model describing the glucose dynamics of PwD. Using glucose Pwd's data, we calibrate the minimal model considering the uncertainty due to errors in glucose measurement, finding the model parameter values that best reproduce the current glucose levels. Then, all the possible combinations of insulin administration and carbohydrate intake are analysed with the aim of maintaining the glucose at safe levels during the following hours. The resulting procedure is tested with data from two real persons with scenarios of the most typical situations. We expect to apply this procedure in more complex models to help the physicians to give suitable recommendations to PwD.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1080/00207160.2022.2142041
dc.identifier.issn0020-7160
dc.identifier.issn1029-0265
dc.identifier.officialurlhttps://doi.org/10.1080/00207160.2022.2142041
dc.identifier.relatedurlhttps://www.tandfonline.com/doi/full/10.1080/00207160.2022.2142041
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117667
dc.issue.number12
dc.journal.titleInternational Journal of Computer Mathematics
dc.language.isoeng
dc.page.final1355
dc.page.initial1341
dc.publisherTaylor and Francis
dc.rights.accessRightsmetadata only access
dc.subject.keywordMinimal glucose mode
dc.subject.keywordGlucose non-linear stochastic model
dc.subject.keywordModel prediction
dc.subject.keywordModel simulation
dc.subject.keywordUncertainty quantification
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleNovel methodological and computational techniques for uncertainty quantification in diabetes short-term management models using real data
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number101
dspace.entity.typePublication

Download

Collections