Point Pattern Methods for Analyzing Industrial Location

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Universidad Nacional Autónoma de México
Google Scholar
Research Projects
Organizational Units
Journal Issue
Literature on point pattern methods for analyzing geographical concentration of firms has increased dramatically over the last decade. Revision of the state of the art in empirical applications shows that most methods are mainly exploratory while others focus on the identification of cluster determinants. We contribute in this regard by analyzing key features that underline the differences among exploratory methods: Functional form, selection of controls, significance of results, and treatment of edge effects. We also stress the potential and complementarity of new methods such as Gibbs models.
La literatura sobre métodos de análisis de patrones de puntos para estudiar la concentración geográfica de las empresas ha aumentado espectacularmente en la última década. La revisión de la literatura empírica muestra que la mayoría de los métodos son principalmente exploratorios, mientras que otros se centran en la identificación de los determinantes de la aglomeración. En este artículo se analizan las características clave que subrayan las diferencias entre los métodos exploratorios: forma funcional, selección de controles, significación de los resultados y tratamiento de los efectos borde. Además, se destaca el potencial y la complementariedad de nuevos métodos como los modelos de Gibbs.
Albert, J.M., Casanova, M.R., and Orts, V. (2012). Spatial location patterns of Spanish manufacturing firms. Papers in Regional Science, 91(1), pp. 107-136. . Alfaro, L., and Chen, M.X. (2014). The global agglomeration of multinational firms. Journal of International Economics, 94(2), pp. 263-276. . Arbia, G. (2001). Modelling the geography of economic activities on a continuous space. Papers in Regional Science, 80(4), pp. 411-424. . Arbia, G., Cella, P., Espa, G., and Giuliani, D. (2015). A micro spatial analysis of firm demography: The case of food stores in the area of Trento (Italy). Empirical Economics, 48(3), pp. 923-937. . Arbia, G., Espa, G., Giuliani, D., and Mazzitelli, A.(2010). Detecting the existence of space-time clustering of firms. Regional Science and Urban Economics, 40(5), pp. 311-323. . Arbia, G., Espa, G., Giuliani, D., and Mazzitelli, A. (2012). Clusters of firms in an inhomogeneous space: The high-tech industries in Milan. Economic Modelling, 29(1), pp. 3-11. . Arbia, G., Espa, G., and Quah, D. (2008). A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empirical Economics, 34(1), pp. 81-103. . Baddeley, A.J., Møller, J., and Waagepetersen, R. (2000). Non‐and semi‐parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54(3), pp. 329-350. . Barff, R.A. (1987). Industrial clustering and the organization of production: A point pattern analysis of manufacturing in Cincinnati, Ohio. Annals of the Association of American Geographers, 77(1), pp. 89-103. . Barlet, M., Briant, A., and Crusson, L. (2013). Location patterns of service industries in France: A distance-based approach. Regional Science and Urban Economics, 43(2), pp. 338-351. . Behrens, K. (2016). Agglomeration and clusters: Tools and insights from coagglomeration patterns. Canadian Journal of Economics/Revue canadienne d’économique, 49(4), pp. 1293-1339. . Behrens, K., and Bougna, T. (2015). An anatomy of the geographical concentration of Canadian manufacturing industries. Regional Science and Urban Economics, 51, pp. 47-69. . Billings, S.B., and Johnson, E.B. (2012). A non-parametric test for industrial specialization. Journal of Urban Economics, 71(3), pp. 312-331. . Bonneu, F., and Thomas-Agnan, C. (2015). Measuring and testing spatial mass concentration with micro-geographic data. Spatial Economic Analysis, 10(3), pp. 289-316. . Boots, B.N., and Getis, A. (1988). Point Pattern Analysis. Newbury Park, CA: SAGE Publications. Buzard, K., Carlino, G.A., Hunt, R.M., Carr, J.K., and Smith, T.E. (2017). The agglomeration of American R&D labs. Journal of Urban Economics, 101, pp. 14-26. . Cao, W., Li, Y., Cheng, J., and Millington, S. (2017). Location patterns of urban industry in Shanghai and implications for sustainability. Journal of Geographical Sciences, 27(7), pp. 857-878. . Chain, C.P., Santos, A.C.d., Castro Júnior, L.G.d., and Prado, J.W.d. (2019). Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. Journal of Economic Surveys, 33(1), pp. 60-84. Coll‐Martínez, E., Moreno‐Monroy, A., and Arauzo‐Carod, J. (2019). Agglomeration of creative industries: An intra‐metropolitan analysis for Barcelona. Papers in Regional Science, 98(1), pp. 409-431. Combes, P., and Overman, H.G. (2004). The spatial distribution of economic activities in the European Union. In: J.V. Henderson and J.-F. Thisse, Handbook of Regional and Urban Economics, Vol. 4 (pp. 2845-2909). The Netherlands: Elsevier. De Dominicis, L., Arbia, G., and De Groot, H.L. (2013). Concentration of manufacturing and service sector activities in Italy: Accounting for spatial dependence and firm size distribution. Regional Studies, 47(3), pp. 405-418. Diggle, P.J., and Chetwynd, A.G. (1991). Second-order analysis of spatial clustering for inhomogeneous populations. Biometrics, 47(3), pp. 1155-1163. Diggle, P.J., Gómez‐Rubio, V., Brown, P.E., Chetwynd, A.G., and Gooding, S. (2007). Second‐order analysis of inhomogeneous spatial point processes using case-control data. Biometrics, 63(2), pp. 550-557. Duranton, G., and Overman, H.G. (2005). Testing for localization using micro-geographic data. The Review of Economic Studies, 72(4), pp. 1077-1106. Duranton, G., and Overman, H.G. (2008). Exploring the detailed location patterns of UK manufacturing industries using microgeographic data. Journal of Regional Science, 48(1), pp. 213-243. Ellison, G., and Glaeser, E.L. (1997). Geographic concentration in US manufacturing industries: A dartboard approach. Journal of Political Economy, 105(5), pp. 889-927. Ellison, G., Glaeser, E.L., and Kerr, W.R. (2010). What causes industry agglomeration? Evidence from coagglomeration patterns. American Economic Review, 100(3), pp. 1195-1213. 10.1257/aer.100.3.1195. Espa, G., Arbia, G., and Giuliani, D. (2013). Conditional versus unconditional industrial agglomeration: Disentangling spatial dependence and spatial heterogeneity in the analysis of ict firms’ distribution in Milan. Journal of Geographical Systems, 15(1), pp. 31-50. Feser, E., and Sweeney, S.H. (2002a). Spatially binding linkages in manufacturing product chains. Global Competition and Local Networks (pp. 111-130). Londres: Routledge. Feser, E.J., and Sweeney, S.H. (2002b). Theory, methods and a cross-metropolitan comparison of business clustering. In: P. McCann (ed.), Industrial Location Economics (pp. 222-259). Cheltenham Glos: Edward Elgar Publishing. Feser, E.J., and Sweeney, S.H. (2000). A test for the coincident economic and spatial clustering of business enterprises. Journal of Geographical Systems, 2(4), pp. 349-373. Funderburg, R.G., and Zhou, X. (2013). Trading industry clusters amid the legacy of industrial land-use planning in southern California. Environment and Planning A, 45(11), pp. 2752-2770. Garrocho-Rangel, C., Álvarez-Lobato, J.A., and Chávez, T. (2013). Calculating intraurban agglomeration of economic units with planar and network K-functions: A comparative analysis. Urban Geography, 34(2), pp. 261-286. Giuliani, D., Arbia, G., and Espa, G. (2014). Weighting Ripley’s K-function to account for the firm dimension in the analysis of spatial concentration. International Regional Science Review, 37(3), pp. 251-272. Gómez‐Antonio, M., and Sweeney, S. (2018). Firm location, interaction, and local characteristics: A case study for Madrid’s electronics sector. Papers in Regional Science, 97(3), pp. 663-685. Helbich, M., and Leitner, M. (2010). Postsuburban spatial evolution of Vienna’s urban fringe: Evidence from point process modeling. Urban Geography, 31(8), pp. 1100-1117. Jensen, P., and Michel, J. (2011). Measuring spatial dispersion: Exact results on the variance of random spatial distributions. The Annals of Regional Science, 47(1), pp. 81-110. Kerr, W.R., and Kominers, S.D. (2015). Agglomerative Forces and Cluster Shapes. The Review of Economics and Statistics, 97(4), pp. 877-899. Klier, T., and McMillen, D.P. (2008). Evolving agglomeration in the US auto supplier industry. Journal of Regional Science, 48(1), pp. 245-267. Koh, H., and Riedel, N. (2014). Assessing the localization pattern of German manufacturing and service industries: A distance-based approach. Regional Studies, 48(5), pp. 823-843. Kosfeld, R., Eckey, H., and Lauridsen, J. (2011). Spatial point pattern analysis and industry concentration. The Annals of Regional Science, 47(2), pp. 311-328. Kopczewska, K. (2017). Distance-based measurement of agglomeration, concentration and specialisation. In: K. Kopczewska, P. Churski, A. Ochojski, and A. Polko (eds.), Measuring Regional Specialisation. A New Approach (pp. 173-216). Cham: Palgrave Macmillan. Kopczewska, K. (2018). Cluster-based measures of regional concentration. Critical overview. Spatial Statistics, 27, pp. 31-57. Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), pp. 483-499. Krugman, P. (1998). What’s new about the new economic geography? Oxford Review of Economic Policy, 14(2), pp. 7-17. Lang, G., Marcon, E., and Puech, F. (2020). Distance-based measures of spatial concentration: Introducing a relative density function. The Annals of Regional Science, 64, pp. 243-265. Lotwick, H., and Silverman, B. (1982). Methods for analysing spatial processes of several types of points. Journal of the Royal Statistical Society: Series B (Methodological), 44(3), pp. 406-413. Marcon, E., and Puech, F. (2003). Evaluating the geographic concentration of industries using distance-based methods. Journal of Economic Geography, 3(4), pp. 409-428. Marcon, E., and Puech, F. (2010). Measures of the geographic concentration of industries: Improving distance-based methods. Journal of Economic Geography, 10(5), pp. 745-762. Marcon, E., and Puech, F. (2017). A typology of distance-based measures of spatial concentration. Regional Science and Urban Economics, 62, pp. 56-67. Møller, J., and Waagepetersen, R.P. (2007). Modern statistics for spatial point processes. Scandinavian Journal of Statistics, 34(4), pp. 643-684. Moreno‐Monroy, A.I., and García-Cruz, G.A. (2016). Intra‐metropolitan agglomeration of formal and informal manufacturing activity: Evidence from Cali, Colombia. Tijdschrift voor economische en sociale geografie, 107(4), pp. 389-406. Murata, Y., Nakajima, R., Okamoto, R., and Tamura, R. (2014). Localized knowledge spillovers and patent citations: A distance-based approach. Review of Economics and Statistics, 96(5), pp. 967-985. Nakajima, K., Saito, Y.U., and Uesugi, I. (2012). Measuring economic localization: Evidence from Japanese firm-level data. Journal of the Japanese and International Economies, 26(2), pp. 201-220. Openshaw, S., and Taylor, P. (1979). A million or so correlation coefficients: Three experiments on the modifiable areal unit problem. In: N. Wrigley and R. Bennett (eds.), Statistical Applications in the Spatial Sciences. London: Pion Press. Pablo-Martí, F., and Arauzo-Carod, J. (2020). Spatial distribution of economic activities: A network approach. Journal of Economic Interaction and Coordination, 15, pp. 441–470. Penttinen, A. (2006). Statistics for marked point patterns. In: The Yearbook of the Finnish Statistical Society (pp. 70-91). Helsinki: The Finnish Statistical Society. Porter, M.E. (2000). Location, competition, and economic development: Local clusters in a global economy. Economic Development Quarterly, 14(1), pp. 15-34. Ripley, B.D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2), pp. 255-266. 3212829. Scholl, T., and Brenner, T. (2016). Detecting Spatial Clustering Using a Firm-Level Cluster Index. Regional Studies, 50(6), pp. 1054-1068. Sweeney, S.H., and Feser, E.J. (1998). Plant size and clustering of manufacturing activity. Geographical Analysis, 30(1), pp. 45-64. Sweeney, S.H., and Feser, E.J. (2004). Business location and spatial externalities: Tying concepts to measures. In: M.F. Goodchild and D.G. Janelle (eds.), Spatially Integrated Social Science (pp. 239-262). New York: Oxford University Press. Sweeney, S.H., and Konty, K.J. (2005). Robust point-pattern inference from spatially censored data. Environment and Planning A, 37(1), pp. 141-159. Sweeney, S., and Gómez‐Antonio, M. (2016). Localization and industry clustering econometrics: An assessment of Gibbs models for spatial point processes. Journal of Regional Science, 56(2), pp. 257-287. Vitali, S., Napoletano, M., and Fagiolo, G. (2013). Spatial localization in manufacturing: A cross-country analysis. Regional Studies, 47(9), pp. 1534-1554.