Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Extended-range temporal electronic speckle pattern interferometry

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorDávila Álvarez, Abundio
dc.date.accessioned2023-06-20T18:51:09Z
dc.date.available2023-06-20T18:51:09Z
dc.date.issued2002-08-01
dc.description© 2002 Optical Society of America. We acknowledge the valuable support of the Mexican Council of Science and Technology (CONACYT) as well as the support of the European Union Project INDUCE.BRPR-CT97-0805.
dc.description.abstractIn recent years the availability of high-speed digital video cameras has motivated the study of electronic speckle pattern interferometry (ESPI) in the time domain. To this end a properly sampled temporal sequence off-fringe patterns is used to analyze the temporal experiment. Samples of temporal speckle images must fulfill the Nyquist criteria over the time axis. When the transient phenomena understudy are too fast, the required sampling frequency over time may not be fulfilled. In that case one needs to extend the measuring range of the algorithm used to extract the modulating phase. We analyze how to use short laser pulses or short video acquisition times with fairly long temporal separation among them to estimate the modulating phase of a dynamic ESPI experiment. The only requirement is that the modulating phase being estimated be properly sampled in the spatial domain.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMexican Council of Science and Technology (CONACYT)
dc.description.sponsorshipEuropean Union
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23124
dc.identifier.doi10.1364/AO.41.004541
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.41.004541
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58777
dc.issue.number22
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final4547
dc.page.initial4541
dc.publisherThe Optical Society Of America
dc.relation.projectIDINDUCE
dc.relation.projectIDBRPR-CT97-0805
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordTransient Deformation Measurement
dc.subject.keywordDisplacement Measurement
dc.subject.keywordTv Holography
dc.subject.keywordPhase
dc.subject.keywordCamera
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleExtended-range temporal electronic speckle pattern interferometry
dc.typejournal article
dc.volume.number41
dcterms.references1. A. Fernández, A. J. Moore, C. Pérez-López, A. F. Doval, and J. Blanco-García,“Study of transient deformations with pulsed TV holography: application to crack detection”, Appl. Opt. 36, 2059–2065 (1997). 2. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones,“ Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999). 3. A. Fernández, J. Blanco-García, A. F. Doval, J. Bugarin, B. V. Dorrio, C. López, J. M. Alen, M. Pérez-Amor, and J. L. Fernández,“ Transient deformation measurement by double-pulsed-subtraction TV holography and the Fourier transform method,” Appl. Opt. 37, 3441–3446 (1998). 4. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999). 5. J. M. Huntley, “Automated analysis of speckle interferograms,” in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. Wiley, New York, 2001. 6. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani,“ Novel temporal Fourier transform speckle pattern shearing interferometer,” Opt. Eng. 37, 1791–1795 (1998). 7. C. Joenathan, B. Franze, P. Haible, and H. Tiziani, “Large in-plane displacement measurement in dual beam speckle interferometry using temporal phase measurement,” J. Mod. Opt. 45, 1975–1984 (1998). 8. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Speckle interferometry with temporal phase evaluation for measuring large-object deformation,” Appl. Opt. 37, 2609–2614 (1998). 9. C. Joenathan, P. Haible, and J. Tiziani, “Speckle interferometry with temporal phase evaluation: influence of decorrelation, speckle size, and nonlinearity of the camera,” Appl. Opt. 38, 1169–1178 (1999). 10. H. van Brug, “Temporal phase unwrapping and its application in shearography systems,” Appl. Opt. 37, 6701–6706 (1998). 11. P. A. A. M. Somers and H. van Brug, “A single camera, dual image real-time-phase-stepped shearing speckle interferometer,” in Fringe’01, Fourth International Workshop on Automatic Processing of Fringe Patterns, W. Osten and W. Juptner, eds. Elsevier, Paris, 2001, pp. 573–580. 12. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. 11, 107–117 (1994). 13. R. A. Martinez-Celorio, A. Dávila, G. H. Kaufmann, and G. Mendiola, “Extension of the displacement measurement range for electronic speckle-shearing pattern interferometry using carrier fringes and a temporal phase unwrapping method,” Opt. Eng. 39, 751–757 (2000).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA68.pdf
Size:
264.82 KB
Format:
Adobe Portable Document Format

Collections