Adaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition
dc.conference.date | 27-31 Mar 2017 | |
dc.conference.place | Laussane, Suiza | |
dc.conference.title | Design, Automation & Test in Europe Conference & Exhibition, 2017 | |
dc.contributor.author | Fallahzadeh, Ramin | |
dc.contributor.author | Pagán Ortiz, Josué | |
dc.contributor.author | Ghasemzadeh, Hassan | |
dc.date.accessioned | 2024-01-23T16:19:12Z | |
dc.date.available | 2024-01-23T16:19:12Z | |
dc.date.issued | 2017 | |
dc.description.abstract | With the proliferation of wearable devices in the Internet-of-Things applications, designing highly power-efficient solutions for continuous operation of these technologies in life-critical settings emerges. We propose a novel ultra-low power framework for adaptive compressed sensing in activity recognition. The proposed design uses a coarse-grained activity recognition module to adaptively tune the compressed sensing module for minimized sensing/transmission costs. We pose an optimization problem to minimize activity-specific sensing rates and introduce a polynomial time approximation algorithm using a novel heuristic dynamic optimization tree. Our evaluations on real-world data shows that the proposed autonomous framework is capable of generating feedback with -80% confidence and improves power reduction performance of the state-of-the-art approach by a factor of two. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | R. Fallahzadeh, J. P. Ortiz and H. Ghasemzadeh, "Adaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 996-1001, doi: 10.23919/DATE.2017.7927136. | |
dc.identifier.doi | 10.23919/date.2017.7927136 | |
dc.identifier.essn | 1558-1101 | |
dc.identifier.officialurl | https://www.doi.org/10.23919/date.2017.7927136 | |
dc.identifier.relatedurl | https://ieeexplore.ieee.org/document/7927136 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/94862 | |
dc.language.iso | eng | |
dc.page.final | 1001 | |
dc.page.initial | 996 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | restricted access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ucm | Electrónica (Informática) | |
dc.subject.unesco | 3307 Tecnología Electrónica | |
dc.title | Adaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition | |
dc.type | conference paper | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2e4c4d42-c8d8-450e-bf6b-28f327b89a44 | |
relation.isAuthorOfPublication.latestForDiscovery | 2e4c4d42-c8d8-450e-bf6b-28f327b89a44 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Adaptive_compressed_sensing.pdf
- Size:
- 216.22 KB
- Format:
- Adobe Portable Document Format