Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Adaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition

dc.conference.date27-31 Mar 2017
dc.conference.placeLaussane, Suiza
dc.conference.titleDesign, Automation & Test in Europe Conference & Exhibition, 2017
dc.contributor.authorFallahzadeh, Ramin
dc.contributor.authorPagán Ortiz, Josué
dc.contributor.authorGhasemzadeh, Hassan
dc.date.accessioned2024-01-23T16:19:12Z
dc.date.available2024-01-23T16:19:12Z
dc.date.issued2017
dc.description.abstractWith the proliferation of wearable devices in the Internet-of-Things applications, designing highly power-efficient solutions for continuous operation of these technologies in life-critical settings emerges. We propose a novel ultra-low power framework for adaptive compressed sensing in activity recognition. The proposed design uses a coarse-grained activity recognition module to adaptively tune the compressed sensing module for minimized sensing/transmission costs. We pose an optimization problem to minimize activity-specific sensing rates and introduce a polynomial time approximation algorithm using a novel heuristic dynamic optimization tree. Our evaluations on real-world data shows that the proposed autonomous framework is capable of generating feedback with -80% confidence and improves power reduction performance of the state-of-the-art approach by a factor of two.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationR. Fallahzadeh, J. P. Ortiz and H. Ghasemzadeh, "Adaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, Switzerland, 2017, pp. 996-1001, doi: 10.23919/DATE.2017.7927136.
dc.identifier.doi10.23919/date.2017.7927136
dc.identifier.essn1558-1101
dc.identifier.officialurlhttps://www.doi.org/10.23919/date.2017.7927136
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/document/7927136
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94862
dc.language.isoeng
dc.page.final1001
dc.page.initial996
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmElectrónica (Informática)
dc.subject.unesco3307 Tecnología Electrónica
dc.titleAdaptive compressed sensing at the fingertip of Internet-of-Things sensors: An ultra-low power activity recognition
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication2e4c4d42-c8d8-450e-bf6b-28f327b89a44
relation.isAuthorOfPublication.latestForDiscovery2e4c4d42-c8d8-450e-bf6b-28f327b89a44

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adaptive_compressed_sensing.pdf
Size:
216.22 KB
Format:
Adobe Portable Document Format