Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two-qubit quantum gates with minimal pulse sequences

dc.contributor.authorSola Reija, Ignacio
dc.contributor.authorShin, Seokmin
dc.contributor.authorChang, Bo Y.
dc.date.accessioned2025-01-21T10:59:37Z
dc.date.available2025-01-21T10:59:37Z
dc.date.issued2024-04-19
dc.description.abstractWorking with trapped atoms at a close distance to each other, we show that one can implement entangling gates based on nonindependent qubits using a single pulse per qubit, or a single structured pulse. The optimal parameters depend on approximate solutions of Diophantine equations, causing the fidelity to never be exactly one, even under ideal conditions, although the errors can be made arbitrarily smaller at the cost of stronger fields. We fully characterize the mechanism by which the gates operate and study the effects of thermal motion and intensity fluctuations in the laser beams for different physical implementations of the gates. If instead of one pulse, we control the system with a two-pulse sequence, a plethora of mechanisms become possible where one can choose the optimal parameters from a wide range of values to achieve high-fidelity gates that are more protected from the effects of laser intensity fluctuations.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipQuantum Computing Technology Development Program
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipUnión Europea
dc.description.statuspub
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.109.052603
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevA.109.052603
dc.identifier.relatedurlhttps://journals.aps.org/pra/abstract/10.1103/PhysRevA.109.052603
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115318
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final052603-10
dc.page.initial052603-1
dc.publisherAmerican Physical Society
dc.relation.projectIDNRF- 2020M3E4A1079793
dc.relation.projectIDPID2021-122796NB-I00
dc.relation.projectIDNRF-2021R1A5A1030054
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu544
dc.subject.keywordAtomic & molecular processes in external fields
dc.subject.keywordCold gases in optical lattices
dc.subject.keywordQuantum circuits
dc.subject.keywordQuantum computation
dc.subject.keywordQuantum control
dc.subject.keywordQuantum protocols
dc.subject.keywordRydberg gases
dc.subject.ucmFísica de materiales
dc.subject.unesco2207 Física Atómica y Nuclear
dc.subject.unesco2209 Óptica
dc.titleTwo-qubit quantum gates with minimal pulse sequences
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number109
dspace.entity.typePublication
relation.isAuthorOfPublicationd16d672c-129d-4c35-a4cd-af6fcb356402
relation.isAuthorOfPublication.latestForDiscoveryd16d672c-129d-4c35-a4cd-af6fcb356402

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sola_PRA24.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections