Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Assessment of PD-L1 expression and tumour infiltrating lymphocytes in early-stage non-small cell lung carcinoma with artificial intelligence algorithms

dc.contributor.authorMolero, Aida
dc.contributor.authorHernández, Susana
dc.contributor.authorAlonso, Marta
dc.contributor.authorPeressini, Melina
dc.contributor.authorCurto, Daniel
dc.contributor.authorLópez-Ríos Moreno, Fernando
dc.contributor.authorConde, Esther
dc.date.accessioned2025-02-19T07:46:00Z
dc.date.available2025-02-19T07:46:00Z
dc.date.issued2024-10-17
dc.descriptionFondos FEDER
dc.description.abstractAims: To study programmed death ligand 1 (PD-L1) expression and tumour infiltrating lymphocytes (TILs) in patients with early-stage non-small cell lung carcinoma (NSCLC) with artificial intelligence (AI) algorithms. Methods: The study included samples from 50 early-stage NSCLCs. PD-L1 immunohistochemistry (IHC) stained slides (clone SP263) were scored manually and with two different AI tools (PathAI and Navify Digital Pathology) by three pathologists. TILs were digitally assessed on H&E and CD8 IHC stained sections with two different algorithms (PathAI and Navify Digital Pathology, respectively). The agreement between observers and methods for each biomarker was analysed. For PD-L1, the turn-around time (TAT) for manual versus AI-assisted scoring was recorded. Results: Agreement was higher in tumours with low PD-L1 expression regardless of the approach. Both AI-powered tools identified a significantly higher number of cases equal or above 1% PD-L1 tumour proportion score as compared with manual scoring (p=0.00015), a finding with potential therapeutic implications. Regarding TAT, there were significant differences between manual scoring and AI use (p value <0.0001 for all comparisons). The total TILs density with the PathAI algorithm and the total density of CD8+ cells with the Navify Digital Pathology software were significantly correlated (τ=0.49 (95% CI 0.37, 0.61), p value<0.0001). Conclusions: This preliminary study supports the use of AI algorithms for the scoring of PD-L1 and TILs in patients with NSCLC.
dc.description.departmentDepto. de Medicina Legal, Psiquiatría y Patología
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipInstituto de Salud Carlos III (España)
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.statuspub
dc.identifier.citationMolero A, Hernandez S, Alonso M, et al. J Clin Pathol Epub ahead of print: [please include Day Month Year]. doi:10.1136/ jcp-2024-209766
dc.identifier.doi10.1136/jcp-2024-209766
dc.identifier.essn1472-4146
dc.identifier.issn0021-9746
dc.identifier.officialurlhttps://doi.org/10.1136/jcp-2024-209766
dc.identifier.pmid39419594
dc.identifier.relatedurlhttps://jcp.bmj.com/content/early/2024/10/17/jcp-2024-209766.long
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/39419594/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/118190
dc.journal.titleJournal of Clinical Pathology
dc.language.isoeng
dc.page.final9
dc.page.initial1
dc.publisherBMJ Publishing Group
dc.relation.projectIDinfo:eu-repo/grantAgreement/ISCIII/PI17/01001
dc.relation.projectIDinfo:eu-repo/grantAgreement/ISCIII/PI22/01700
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM/P2022/BMD-7437
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.cdu616.1/.9
dc.subject.keywordArtificial Intelligence
dc.subject.keywordBiomarkers
dc.subject.keywordTumor
dc.subject.keywordLung Neoplasms
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.subject.unesco3207 Patología
dc.titleAssessment of PD-L1 expression and tumour infiltrating lymphocytes in early-stage non-small cell lung carcinoma with artificial intelligence algorithms
dc.typejournal article
dc.type.hasVersionEVoR
dspace.entity.typePublication
relation.isAuthorOfPublication75bc569b-e9f3-40fb-ab3b-8d5b4d9aab65
relation.isAuthorOfPublication.latestForDiscovery75bc569b-e9f3-40fb-ab3b-8d5b4d9aab65

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molero_A_2024.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format

Collections