Orthogonally additive holomorphic functions on open subsets of C(K)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We introduce, study and characterize orthogonally additive holomorphic functions f:U -> a", where U is an open subset of C(K). We are led to consider orthogonal additivity at different points of U.
Unesco subjects
Aron, R., Berner, P.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. France 106(1), 3–24 (1978) Benyamini, Y., Lassalle, S., Llavona, J.G.: Homogeneous orthogonally-additive polynomials on Banach lattices. Bull. Lond. Math. Soc. 38(3), 459–469 (2006) Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive polynomials over C(K) are measures—a short proof. Integral Equ. Oper. Theory 56, 597–602 (2006) Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive holomorphic functions of bounded type over C(K). Proc. Edinb. Math. Soc. 53(2), 609–618 (2010) Dineen, S.: Complex Analysis in Infinite Dimensional Spaces. Springer Monographs in Mathematics. Davie, A., Gamelin, T.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351–356 (1989) Mujica, J.: Complex Analysis on Banach Spaces. Dover, Mineola (2010) Palazuelos, C., Peralta, A.M., Villanueva, I.: Orthogonally additive polynomials on C∗-algebras. Q. J. Math. 59(3), 363–374 (2008) Pérez-García, D., Villanueva, I.: Orthogonally additive polynomials on spaces of continuous functions. J. Math. Anal. Appl. 306(1), 97–105 (2005) Sundaresan, K.: Geometry of spaces of homogeneous polynomials on Banach lattices. In: Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 571–586. Amer. Math. Soc., Providence (1991)