Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Filter pruning for convolutional neural networks in semantic image segmentation

dc.contributor.authorLópez González, Clara Isabel
dc.contributor.authorGascó, Esther
dc.contributor.authorBarrientos Espillco, Fredy
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.date.accessioned2023-11-17T16:02:51Z
dc.date.available2023-11-17T16:02:51Z
dc.date.issued2024-01
dc.description.abstractThe remarkable performance of Convolutional Neural Networks (CNNs) has increased their use in real-time systems and devices with limited resources. Hence, compacting these networks while preserving accuracy has become necessary, leading to multiple compression methods. However, the majority require intensive iterative procedures and do not delve into the influence of the used data. To overcome these issues, this paper presents several contributions, framed in the context of explainable Artificial Intelligence (xAI): (a) two filter pruning methods for CNNs, which remove the less significant convolutional kernels; (b) a fine-tuning strategy to recover generalization; (c) a layer pruning approach for U-Net; and (d) an explanation of the relationship between performance and the used data. Filter and feature maps information are used in the pruning process: Principal Component Analysis (PCA) is combined with a next-convolution influence-metric, while the latter and the mean standard deviation are used in an importance score distribution-based method. The developed strategies are generic, and therefore applicable to different models. Experiments demonstrating their effectiveness are conducted over distinct CNNs and datasets, focusing mainly on semantic segmentation (using U-Net, DeepLabv3+, SegNet, and VGG-16 as highly representative models). Pruned U-Net on agricultural benchmarks achieves 98.7% parameters and 97.5% FLOPs drop, with a 0.35% gain in accuracy. DeepLabv3+ and SegNet on CamVid reach 46.5% and 72.4% parameters reduction and a 51.9% and 83.6% FLOPs drop respectively, with almost no decrease in accuracy. VGG-16 on CIFAR-10 obtains up to 86.5% parameter and 82.2% FLOPs decrease with a 0.78% accuracy gain.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Informática
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSinérgicos Comunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades de España
dc.description.sponsorshipMinisterio de Universidades de España
dc.description.sponsorshipMinisterio de Educación de Perú
dc.description.statuspub
dc.identifier.citationLópez-González CI, Gascó E, Barrientos-Espillco F, Besada-Portas E, Pajares G. Filter pruning for convolutional neural networks in semantic image segmentation. Neural Networks. 2024 Jan;169:713-32
dc.identifier.doi10.1016/j.neunet.2023.11.010
dc.identifier.issn0893-6080
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0893608023006330
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88802
dc.journal.titleNeural Networks
dc.language.isoeng
dc.page.final732
dc.page.initial713
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/954755/EU/Hacia un sistema Integral para la Alerta y Gestión de BLOOMs de cianobacterias en aguas continentales/IA-GES-BLOOM-CM
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098962-B-C21/ES/MONITORIZACION AUTOMATICA DE CONTAMINANTES EN AGUAS EMBALSADAS UTILIZANDO BIOSENSORES Y VEHICULOS AUTONOMOS DE SUPERFICIE/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.8
dc.subject.cdu004.85
dc.subject.cdu004.932
dc.subject.cdu004.032.26
dc.subject.keywordConvolutional Neural Networks (CNNs)
dc.subject.keywordExplainable Artificial Intelligence (xAI)
dc.subject.keywordFilter pruning
dc.subject.keywordImage segmentation
dc.subject.keywordModel compression
dc.subject.keywordPrincipal Component Analysis (PCA)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.titleFilter pruning for convolutional neural networks in semantic image segmentation
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number169
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery878e090e-a59f-4f17-b5a2-7746bed14484

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CILopez_Filter pruning for convolutional neural networs in semantic image segmentation_compressed.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format

Collections