On fuzzy subnets.
dc.contributor.author | Gallego Lupiáñez, Francisco | |
dc.date.accessioned | 2023-06-20T16:51:39Z | |
dc.date.available | 2023-06-20T16:51:39Z | |
dc.date.issued | 2001 | |
dc.description.abstract | In General Topology, there is a close paralellism between the theories of convergence of nets and of filters, in which "subnet" corresponds to "finer filter", but this relationship depends on the notion of subnet that one uses. Various authors have defined, for fuzzy topological spaces, the convergence of fuzzy filters and fuzzy nets, and have obtained connections between these theories; however these authors do not obtain a satisfactory relation between a fuzzy net and the fuzzy net based on the prefilter generated by it. In this paper we define for fuzzy nets a new notion of fuzzy subnet, that solves this question. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15304 | |
dc.identifier.doi | 10.1016/S0165-0114(99)00085-8 | |
dc.identifier.issn | 0165-0114 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0165011499000858 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57255 | |
dc.issue.number | 3 | |
dc.journal.title | Fuzzy Sets and Systems | |
dc.language.iso | eng | |
dc.page.final | 538 | |
dc.page.initial | 535 | |
dc.publisher | Elsevier Science Bv | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 5151.1 | |
dc.subject.keyword | Topology | |
dc.subject.keyword | Convergence | |
dc.subject.keyword | Fuzzy filters | |
dc.subject.keyword | Fuzzy nets | |
dc.subject.keyword | Subnets | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On fuzzy subnets. | |
dc.type | journal article | |
dc.volume.number | 119 | |
dcterms.references | R. Lowen, Convergence in fuzzy topological spaces, Gen. Topology Appl. 10 (1979) 147–160. R. Lowen, The relation between .lter and net convergence in fuzzy topological spaces, Fuzzy Math. 4 (1983) 41–52. M. Macho Stadler, M.A. de Prada Vicente, Fuzzy t-net theory, Fuzzy Sets and Systems 37 (1990) 225 –235. M. Macho Stadler, M.A. de Prada Vicente, On N-convergence off uzzy nets, Fuzzy Sets and Systems 51 (1992) 203–217. M.A. de Prada Vicente, M. Saralegui Aranguren, Fuzzy .lters, J. Math. Anal. Appl. 129 (1988) 560 –568. P.-M. Pu, Y.-M. Liu, Fuzzy topology I. Neighborhood structure ofa fuzzy point and Moore–Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599. A.J. Ward, Convergence ofdirected nets, Proc. Camb. Phil. Soc. 61 (1965) 877–878 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 | |
relation.isAuthorOfPublication.latestForDiscovery | d690c2bd-762b-4bd2-a8ba-11c504ad15d5 |
Download
Original bundle
1 - 1 of 1