Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Model checking in loglinear models using phi-divergences and MLEs

dc.contributor.authorCressie, Noel A.
dc.contributor.authorPardo Llorente, Leandro
dc.date.accessioned2023-06-20T17:08:24Z
dc.date.available2023-06-20T17:08:24Z
dc.date.issued2002-04-15
dc.description.abstractConsider the loglinear model for categorical data under the assumption of either Poisson, multinomial, or product-multinomial sampling. We are interested in testing between various hypotheses on the parameter space. In this paper, the usual likelihood ratio test, with maximum likelihood estimators for the unspecified parameters, is generalized to tests based on phi-divergences, still using maximum likelihood estimators. These tests yield the likelihood ratio test as a special case. Asymptotic distributions for the new test statistics are derived under both the null and the alternative hypotheses. Then it is shown how the phi-divergences can be used to test nested hypotheses, yielding a type of "analysis of divergence".
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNATO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17840
dc.identifier.doi10.1016/S0378-3758(01)00236-1
dc.identifier.issn0378-3758
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0378375801002361
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57831
dc.issue.number1-2
dc.journal.titleJournal of statistical planning and inference
dc.language.isoeng
dc.page.final453
dc.page.initial437
dc.publisherElsevier science Bv.
dc.relation.projectIDCFG970442.
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordasymptotic distributions
dc.subject.keywordnested hypotheses
dc.subject.keywordPoisson sampling
dc.subject.keywordmultinomial sampling
dc.subject.keywordproduct-multinomial sampling
dc.subject.keywordof-fit tests
dc.subject.keyworddiscrete-distributions.
dc.subject.ucmEstadística aplicada
dc.titleModel checking in loglinear models using phi-divergences and MLEs
dc.typejournal article
dc.volume.number103
dcterms.referencesAli, S.M., Silvey, S.D., 1966. A general class of coeMcients of divergence of one distribution fromanother. J. Roy. Statist. Soc. Ser. B 26, 131–142. Birch, M.W., 1964. A new proof of the Pearson–Fisher theorem. Ann. Math. Statist. 35, 817–824. Burbea, J., Rao, C.R., 1982. On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory 28, 489–495. Christensen, R., 1997. Log-Linear Models and Logistic Regression, 2nd Edition. Springer, New York. Collett, D., 1994. Modelling Survival Data in Medical Research. Chapman & Hall, London. Cressie, N., Read, T.R.C., 1984. Multinomial goodness-of-1t tests. J. Roy. Statist. Soc. Ser. B 46, 440–464. Cressie, N., Pardo, L., 2000. Minimum _-divergence estimator and hierarchical testing in loglinear models. Statistica Sinica, 10, 867–884. CsiszJar, I., 1963. Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der ErgodizitUat on MarkhoIschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences, Series A, Vol. 8, pp. 85–108. Fraser, D.A.S., 1957. Non-Parametric Methods in Statistics. Wiley, New York. Haberman, S.J., 1974. The Analysis of Frequency Data. The University of Chicago Press, Chicago. Morales, D., Pardo, L., Vajda, I., 1995. Asymptotic divergences of estimates of discrete distributions. Jour. Statist. Plann. Infer. 48, 347–369. Pardo, M.C., 1999. On Burbea–Rao divergences based goodness-of-1t tests for multinomial models. J. Multivariate Anal. 69, 65–87. Pardo, M.C., Vajda, I., 1997. About distances of discrete distributions satisfying the data processing theorem of information theory. IEEE Trans. Inform. Theory 43, 1288–1293. Rao, C.R., 1982a. Diversity and dissimilarity coeMcients: a uni1ed approach. Theoret. Population Biol. 21, 24–43. Rao, C.R., 1982b. Diversity: its measurement, decomposition, apportionment and analysis. Sankhya, Ser. A 44, 1–22. Rao, C.R., 1986. ANODIV: generalization of ANOVA through entropy and cross entropy functions (presented at Fourth Vilnius Conference, Vilnius, USSR, 1985). In: Prohorov, Y.V., Statulevicius, V.A., Sazanov, V.V., Grigelionis, B. (Eds.), Probability Theory and Mathematical Statistics, Vol. 2. VNU Science Press, Utrecht, pp. 477–494. Read, T.R.C., Cressie, N.A.C., 1988. Goodness-of-1t Statistics for Discrete Multivariate Data. Springer, New York. Searle, S.R., 1971. Linear Models. Wiley, New York.
dspace.entity.typePublication
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoLeandro41.pdf
Size:
142.23 KB
Format:
Adobe Portable Document Format

Collections