Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Redes neuronales: entrenamiento y comportamiento

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

El propósito de este trabajo es estudiar la respuesta de una Red Neuronal según cambios en sus diferentes atributos para el mismo conjunto de datos dado. Para ello utilizaré dos ejemplos concretos, con diferentes conjuntos de datos reales y diferentes tipos de Redes Neuronales en cada uno de ellos. En el primero, utilizaré el conjunto de datos “mnist” que consiste en un conjunto de fotografías dadas en las que se ven diferentes imágenes de números escritos a mano y la Red Neuronal intentará reconocer dicho número. Las imágenes tienen una resolución de 28x28 pixeles y los números van del 0 al 9. En el segundo, utilizaré un conjunto de datos de la web filmográfica IMDB, del cual se extraerán 25000 diferentes críticas de películas etiquetadas según el sentimiento de dicha crítica. Para el buen funcionamiento de la Red Neuronal y la agilidad del estudio, he puesto el límite máximo de palabras a analizar en 500. Para este último caso, utilizare una Red Neuronal Convolucional. Otra idea que haré ver más adelante es que, aunque ciertos tipos de Redes se usan más para ciertos tipos de conjuntos de datos, cualquier Red puede ser usada para cualquier tipo de datos. Por ejemplo, las Redes Neuronales Convolucionales se usan más a menudo para imágenes y en este trabajo lo haré al contrario.

Research Projects

Organizational Units

Journal Issue

Description

Keywords