Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sums of squares in real analytic rings.

dc.contributor.authorFernando Galván, José Francisco
dc.date.accessioned2023-06-20T16:51:20Z
dc.date.available2023-06-20T16:51:20Z
dc.date.issued2002
dc.description.abstractLet A be an analytic ring. We show:(1) A has finite Pythagoras number if and only if its real dimension is 2, and (2) if every positive semidefinite element of A is a sum of squares, then A is real and has real dimension 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15238
dc.identifier.doi10.1090/S0002-9947-02-02956-2
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/2002-354-05/S0002-9947-02-02956-
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57241
dc.issue.number5
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final1919
dc.page.initial1909
dc.publisherAmerican Mathematical Society
dc.relation.projectIDPB98-0756-C02-01
dc.rights.accessRightsrestricted access
dc.subject.cdu511
dc.subject.cdu512.7
dc.subject.keywordAnalytic ring
dc.subject.keywordPositive semidefnite element
dc.subject.keywordSum of squares
dc.subject.keywordPythagoras number.
dc.subject.ucmTeoría de números
dc.subject.ucmGeometria algebraica
dc.subject.unesco1205 Teoría de Números
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSums of squares in real analytic rings.
dc.typejournal article
dc.volume.number354
dcterms.referencesC. Andradas, L. Br�ocker, J.M. Ruiz:Constructible sets in real geometry. Ergeb. Math.33. Berlin Heidelberg New York: Springer Verlag, 1996. MR 98e:14056 C. Andradas, J.M. Ruiz: On local uniformization of orderings. In Recent advances in real algebraic geometry and quadratic forms, Proceedings of the RAGSQUAD Year,Berkeley 1990-1991. AMS Contemporary Math. 155, 19-46 (1994). MR 94k:14048 J. Bochnak, M. Coste, M.F. Roy: Real Algebraic Geometry, Ergeb. Math. 36 Berlin Heidelberg New York: Springer-Verlag, 1998. MR 2000a:14067 A. Campillo, J.M. Ruiz: Some Remarks on Pythagorean Real Curve Germs, J. Algebra 128, No. 2, 271-275 (1990). MR 91b:14072 M.D. Choi, Z.D. Dai, T.Y. Lam, B. Reznick: The Pythagoras number of some ane algebras and local algebras, J. Reine Angew. Math. 336, 45-82 (1982). MR 84f:12012 J.F. Fernando: Positive semidenite germs in real analytic surfaces, Math. Ann. (to appear). J.F. Fernando: On the Pythagoras numbers of real analytic rings, J. Algebra 243,321-338 (2001). CMP 2001:17 J.F. Fernando: Analytic surface germs with minimal J.F. Fernando, J.M. Ruiz: Positive semidenite germs on the cone, Pacic J. Math. (to appear). T. de Jong, G. Pster: Local Analytic Geometry, basic theory and applications,Advanced Lectures in Mathematics. Braunschweig/Wiesbaden: Vieweg, 2000. MR 2001c:32001 J. Ortega: On the Pythagoras number of a real irreducible algebroid curve, Math. Ann. 289, 111-123 (1991). MR 92a:14065 R. Quarez: Pythagoras numbers of real algebroid curves and Gram matrices. J. Algebra 238, 139-158 (2001). J.M. Ruiz: On Hilbert's 17th problem and real nullstellensatz for global analytic functions,Math. Z. 190, 447-459 (1985). MR 87b:32010 J.M. Ruiz: The basic theory of power series, Advanced Lectures in Mathematics.Braunschweig Wiesbaden: Vieweg Verlag, 1993. MR 94i:13012 J.M. Ruiz: Sums of two squares in analytic rings, Math. Z. 230, 317-328 (1999). MR 2000b:58068 C. Scheiderer: Sums of squares of regular functions on real algebraic varieties, Trans.Amer. Math. Soc. 352, nr. 3, 1039-1069 (1999). MR 2000j:14090 C. Scheiderer: On sums of squares in local rings, J. Reine Angew. Math. 540, 205{227 (2001).
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18.pdf
Size:
192.95 KB
Format:
Adobe Portable Document Format

Collections