On Hilbert 17th problem and real nullstellensatz for global analytic functions
dc.contributor.author | Ruiz Sancho, Jesús María | |
dc.date.accessioned | 2023-06-21T02:04:00Z | |
dc.date.available | 2023-06-21T02:04:00Z | |
dc.date.issued | 1985 | |
dc.description.abstract | The author proves a Nullstellensatz for the ring of real analytic functions on a compact analytic manifold. The main results are the following. Theorem 1: Let X be a compact irreducible analytic set of a real analytic manifold M and f:X→R a nonnegative analytic function. Then f is a sum of squares of meromorphic functions. Theorem 2: Let I be a finitely generated ideal of O(M) with Z(I) compact. Then IZ(I)=I√R, where Z(I) is the zero set of I, IZ(I) the ideal of functions (in O(M)) vanishing on I, and I√R the real radical of I (i.e. the set of functions f in O(M) such that there exist g1,⋯,gk and an integer p with f2p + g2 1 + ⋯ +g2k ∈ I). Corollary: Let I be as in Theorem 2. Then IZ(I)=I if and only if I is real (i.e. I=I √ R). The proofs are based on results about extension of orders. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CAICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20069 | |
dc.identifier.doi | 10.1007/BF01215144 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.officialurl | http://link.springer.com/content/pdf/10.1007%2FBF01215144 | |
dc.identifier.relatedurl | http://www.springer.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64759 | |
dc.issue.number | 3 | |
dc.journal.title | Mathematische Zeitschrift | |
dc.language.iso | eng | |
dc.page.final | 454 | |
dc.page.initial | 447 | |
dc.publisher | Springer | |
dc.relation.projectID | 2280/83 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 510.22 | |
dc.subject.cdu | 515.171.5 | |
dc.subject.keyword | Real nullstellensatz | |
dc.subject.keyword | Hilbert's 17th problem | |
dc.subject.keyword | sum of squares of | |
dc.subject.keyword | meromorphic functions | |
dc.subject.keyword | real radical | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Teoría de conjuntos | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1201.02 Teoría Axiomática de Conjuntos | |
dc.title | On Hilbert 17th problem and real nullstellensatz for global analytic functions | |
dc.type | journal article | |
dc.volume.number | 190 | |
dcterms.references | Abhyankar, S.: On the valuation centered in a local domain, Am. J. Math. 78, 321-348 (1956) Becket, E.: Valuations and real places in the theory of formally real fields, in Lecture Notes in Math. 959. Berlin Heidelberg New York: Springer 1982 Bochnak, J., Efroymson, G.: Real algebraic geometry and the 17th Hilbert Problem. Math. Ann. 251, 213-241 (1980) Bochnak, J., Kucharz, W., Shiota, M.: On equivalence of ideals of real global analytic functions and the 17th Hilbert Problem. Invent. Math. 63, 403-421 (1981) Bochnak, J., Risler, J.J.: Sur le théoréme des zéros pour les variétés analytiques réelles de dimension 2, Ann. Sci. Ec. Norm. Super. 8, 353-364 (1975) Bourbaki, N.: Commutative Algebra. Paris: Hermann 1972 Bruhat, F., Whitney, H.: Quelques propriétés fondamentales des ensembles analytiques réels, Comment. Math. Helv. 33, 132-160 (1959) Brumfiel, G.W.: Partially ordered rings and semialgebraic geometry. London Math. S. 37. Cambridge: University Press 1979 Brumfiel, G.W.: Real valuation rings and ideals, in Lecture Notes in Math. 959. Berlin Heidelberg New York: Springer 1982 Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85, 77-99 (1957) Grothendieck, A., Dieudonné, J.: Elements de Geométrie Algebrique. Publ. Math. I.H.E.S. 24 (1965) Frisch, J.: Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math. 4, 118-138 (1967) Jacobson, N.: Lectures in Abstract Algebra, III, Graduate Texts in Math. 32. Berlin Heidelberg New York: Springer Jaworski, P.: Positive definite analytic functions and vector bundles. Bull. Acad. Pol. Sci., XXX, nº 11-12, 501-506 (1982) Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. I. Interscience Tracts in Pure and Appl. Math. 15. New York: J. Wiley 1963 Lassalle, G.: Sur le théoréme des zéros differentiables, in Lecture Notes in Math. 535. Berlin Heidelberg New York: Springer 1975 Lam, T.Y.: An introduction to real algebra. Sexta Escuela Latinoamericana de Mat. Oaxtepec, 1982 Lam, T.Y.: Orderings, valuations and quadratic forms. Conf. Board Math. Sciences, 52, AMS 1983 Matsumura, H.: Commutative Algebra, 2d edition. Amsterdam: W.A. Benjamin Co. 1980 Risler, JJ.: Le théorème des zéros en géométries algébrique et analytique réelles. Bull. Soc. Math. Fr. 104, 113-127 (1976) Ruiz, J.M.: Central orderings in fields of real meromorphic function germs. Manuscr. Math. 46, 193-214 (1984) Ruiz, J.M.: Local theory of total orderings in excellent domains. Preprint 1984 Ruiz, J.M.: A quantitative theorem on extensions of orderings under completion. Preprint 1984 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 | |
relation.isAuthorOfPublication.latestForDiscovery | f12f8d97-65c7-46aa-ad47-2b7099b37aa4 |
Download
Original bundle
1 - 1 of 1