Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A bleeding edge web application for early detection of cyanobacterial blooms

dc.contributor.authorChacón Sombría, Jesús
dc.contributor.authorAndrade, Giordy A.
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorEsteban San Román, Segundo
dc.date.accessioned2025-01-23T09:26:36Z
dc.date.available2025-01-23T09:26:36Z
dc.date.issued2024-02-29
dc.description.abstractHarmful Algal and Cyanobacterial Bloom (HACB) threaten aquatic ecosystems, human health, and the economy. Many factors influence these dynamic events, which are often difficult to detect until the late stages of growth. The inclusion of an Early Warning System (EWS) can be instrumental in identifying hazards and preventing or at least minimizing their impact. Traditional monitoring approaches often fail to provide the real-time, high-resolution data needed for effective early warnings. The integration of Internet of Things (IoT) technologies offers a promising avenue to address these limitations by creating a network of interconnected sensors capable of continuously collecting and transmitting data from various aquatic environments. In this paper, we present DEVS-BLOOM-WebUI, an advanced web application that extends the capabilities of the DEVS-BLOOM framework, providing a user-friendly interface that supports different user roles. The application includes an interface to manage users and permissions, dashboards to inspect data (from sensors, Unmanned Surface Vehicles (USVs), weather stations, etc.), train AI models, explore their predictions, and facilitate decision-making through notification of early warnings. A key feature of DEVS-BLOOM-WebUI is the Scenario Configuration Editor (SCE). This interactive tool allows for users to design and configure the deployment of monitoring infrastructure within a water body, enhancing the system’s adaptability to user-defined simulation scenarios. This paper also investigates the practical implementation of an IoT-based EWS, discussing design considerations, sensor technologies, and communication protocols essential for seamless data integration and effective operation of the EWS.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationChacón, J., Andrade, G. A., Risco-Martín, J. L., & Esteban, S. (2024). A Bleeding Edge Web Application for Early Detection of Cyanobacterial Blooms. Electronics, 13(5), 942. https://doi.org/10.3390/electronics13050942
dc.identifier.doi10.3390/electronics13050942
dc.identifier.officialurlhttps://dx.doi.org/10.3390/electronics13050942
dc.identifier.urihttps://hdl.handle.net/20.500.14352/115746
dc.issue.number5
dc.journal.titleElectronics
dc.language.isoeng
dc.page.final942-22
dc.page.initial942-1
dc.publisherMDPI
dc.relation.projectIDTED2021-130123B-100
dc.relation.projectIDIA-GES-BLOOM-CM (Y2020/TCS-6420)
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//PID2021-127648OB-C33/ES/
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.42
dc.subject.keywordWeb application
dc.subject.keywordInternet of Things
dc.subject.keywordHarmful Algal and Cyanobacterial Bloom
dc.subject.keywordAutomated measurement
dc.subject.keywordEarly warning system
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco2508.11 Calidad de las Aguas
dc.subject.unesco3304.12 Dispositivos de Control
dc.titleA bleeding edge web application for early detection of cyanobacterial blooms
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublicatione987dc75-a909-418c-93a6-23ad9eb40ce6
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublication386f94e5-c78d-49d3-8046-ece83adf5ecc
relation.isAuthorOfPublication.latestForDiscoverye987dc75-a909-418c-93a6-23ad9eb40ce6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
electronics-13-00942-v2.pdf
Size:
8.71 MB
Format:
Adobe Portable Document Format

Collections