The p-Adic Jaynes–Cummings Model in Symplectic Geometry

dc.contributor.authorCrespo, Luis
dc.contributor.authorPelayo González, Álvaro
dc.date.accessioned2025-12-16T18:06:54Z
dc.date.available2025-12-16T18:06:54Z
dc.date.issued2025
dc.description2025 Acuerdos transformativos CRUE
dc.description.abstractThe notion of classical p-adic integrable system on a p-adic symplectic manifold was proposed by Voevodsky, Warren, and the second author a decade ago in analogy with the real case. In the present paper, we introduce and study, from the viewpoint of symplectic geometry and topology, the basic properties of the p-adic version of the classical Jaynes–Cummings model. The Jaynes–Cummings model is a fundamental example of an integrable system going back to the work of Jaynes and Cummings in the 1960s, and which applies to many physical situations, for instance in quantum optics and quantum information theory. Several of our results depend on the value of p: The structure of the model depends on the class of the prime p modulo 4 and p = 2 requires special treatment.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipBBVA
dc.description.statuspub
dc.identifier.doi10.1007/s00332-025-10161-8
dc.identifier.issn0938-8974
dc.identifier.issn1432-1467
dc.identifier.officialurlhttps://doi.org/10.1007/s00332-025-10161-8
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129174
dc.journal.titleJournal of Nonlinear Science
dc.language.isoeng
dc.page.initial66 (76)
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106188GB-I00/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137283NB-C21/ES/COMBINATORIA GEOMETRICA Y SUS APLICACIONES AL ALGEBRA/
dc.relation.projectIDFrom Integrability to Randomness in Symplectic and Quantum Geometry
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordP-adic geometry
dc.subject.keywordSymplectic geometry
dc.subject.keywordDynamical systems
dc.subject.keywordSingularities
dc.subject.keywordJaynes–Cummings mode
dc.subject.keywordIntegrable systems
dc.subject.ucmGeometría diferencial
dc.subject.ucmFísica matemática
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleThe p-Adic Jaynes–Cummings Model in Symplectic Geometry
dc.typejournal article
dc.volume.number35
dspace.entity.typePublication
relation.isAuthorOfPublication55fa926c-63f1-441c-88ca-3bc17ec7996e
relation.isAuthorOfPublication.latestForDiscovery55fa926c-63f1-441c-88ca-3bc17ec7996e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jaynes-cummings-JNLS2025.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format

Collections