The p-Adic Jaynes–Cummings Model in Symplectic Geometry
| dc.contributor.author | Crespo, Luis | |
| dc.contributor.author | Pelayo González, Álvaro | |
| dc.date.accessioned | 2025-12-16T18:06:54Z | |
| dc.date.available | 2025-12-16T18:06:54Z | |
| dc.date.issued | 2025 | |
| dc.description | 2025 Acuerdos transformativos CRUE | |
| dc.description.abstract | The notion of classical p-adic integrable system on a p-adic symplectic manifold was proposed by Voevodsky, Warren, and the second author a decade ago in analogy with the real case. In the present paper, we introduce and study, from the viewpoint of symplectic geometry and topology, the basic properties of the p-adic version of the classical Jaynes–Cummings model. The Jaynes–Cummings model is a fundamental example of an integrable system going back to the work of Jaynes and Cummings in the 1960s, and which applies to many physical situations, for instance in quantum optics and quantum information theory. Several of our results depend on the value of p: The structure of the model depends on the class of the prime p modulo 4 and p = 2 requires special treatment. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
| dc.description.sponsorship | BBVA | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.1007/s00332-025-10161-8 | |
| dc.identifier.issn | 0938-8974 | |
| dc.identifier.issn | 1432-1467 | |
| dc.identifier.officialurl | https://doi.org/10.1007/s00332-025-10161-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/129174 | |
| dc.journal.title | Journal of Nonlinear Science | |
| dc.language.iso | eng | |
| dc.page.initial | 66 (76) | |
| dc.publisher | Springer | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106188GB-I00/ES/COMBINATORIA Y COMPLEJIDAD DE ESTRUCTURAS GEOMETRICAS DISCRETAS/ | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137283NB-C21/ES/COMBINATORIA GEOMETRICA Y SUS APLICACIONES AL ALGEBRA/ | |
| dc.relation.projectID | From Integrability to Randomness in Symplectic and Quantum Geometry | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keyword | P-adic geometry | |
| dc.subject.keyword | Symplectic geometry | |
| dc.subject.keyword | Dynamical systems | |
| dc.subject.keyword | Singularities | |
| dc.subject.keyword | Jaynes–Cummings mode | |
| dc.subject.keyword | Integrable systems | |
| dc.subject.ucm | Geometría diferencial | |
| dc.subject.ucm | Física matemática | |
| dc.subject.unesco | 1204.04 Geometría Diferencial | |
| dc.title | The p-Adic Jaynes–Cummings Model in Symplectic Geometry | |
| dc.type | journal article | |
| dc.volume.number | 35 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 55fa926c-63f1-441c-88ca-3bc17ec7996e | |
| relation.isAuthorOfPublication.latestForDiscovery | 55fa926c-63f1-441c-88ca-3bc17ec7996e |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- jaynes-cummings-JNLS2025.pdf
- Size:
- 2.69 MB
- Format:
- Adobe Portable Document Format


