Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Barrelledness conditions on S(Σ;E) and B(Σ;E).

dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-21T02:02:33Z
dc.date.available2023-06-21T02:02:33Z
dc.date.issued1982
dc.description.abstractLet Ω be a nonempty set, and let Σ be a field of subsets of Ω. If E is a locally convex space we denote by S(Σ;E) the vector space of all Σ-simple functions defined on Ω with values in E, and by B(Σ;E) the vector space of all functions defined on Ω with values in E which are uniform limits of Σ-simple functions. We give some results characterizing when the spaces S(Σ;E) and B(Σ;E) endowed with the uniform convergence topology are barrelled or infrabarrelled.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16891
dc.identifier.doi10.1007/BF01456405
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/x35m3k7433761318/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64686
dc.issue.number1
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final22
dc.page.initial11
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keyworduniform convergence topology
dc.subject.keywordbarrelled
dc.subject.keywordinfrabarrelled
dc.subject.keyworduniform limit of vector valued simple functions
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleBarrelledness conditions on S(Σ;E) and B(Σ;E).
dc.typejournal article
dc.volume.number261
dcterms.referencesDiestel, J., Uhl, J.J., Jr.: Vector measures. Mathematical surveys. No. 15. Providence: American Mathematical Society 1977 Hollstein, R.: Über die Tonneliertheit von lokalkonvexen Tensorprodukten. Manuscripta Math.22, 7-12 (1977) Hollstein, R.: Permanence properties ofC(X;E) (to appear) Horváth, J.: Topological vector spaces and distributions. London, Amsterdam, Paris: Addison Wesley 1966 Köthe, G.: Topological vector spaces I. Berlin, Heidelberg, New York: Springer 1969 Marquina, A., Sanz Serna, J.M.: Barrelledness conditions onc o (E). Arch. Math.31 589-596 (1978) Mendoza, J.: Barrelledness onc o (E). Arch. Math. (to appear) Mendoza, J.: Necessary and sufficient conditions forC(X;E) to be barrelled or infrabarrelled. Simon Stevin (to appear) Mujica, J.: Spaces of continuous functions with values in an inductive limit (to appear) Pietsch, A.: Nuclear locally convex spaces. Berlin, Heidelberg, New York: Springer 1972 Schmets, J.: Espaces de fonctions continues. Lecture Notes in Mathematics. Vol. 519. Berlin, Heidelberg, New York: Springer 1976 Schmets, J.: An example of the barrelled space associated toC(X;E). Lecture Notes in Mathematics, Vol. 843, pp. 561-571. Berlin, Heidelberg, New York: Springer 1981 Shuchat, A.H.: Integral representation theorems in topological vector spaces. Trans. Am. Math. Soc.172, 373-397 (1972) Swong, K.: A representation theory of continuous linear maps. Math. Ann.155, 270-291 (1964)
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mendoza17.pdf
Size:
521.82 KB
Format:
Adobe Portable Document Format

Collections