Comparison of observed and general circulation model derived continental subsurface heat flux in the Northern Hemisphere
dc.contributor.author | MacDougall, Andrew H. | |
dc.contributor.author | Beltrami, Hugo | |
dc.contributor.author | González Rouco, Jesús Fidel | |
dc.contributor.author | Stevens, M. Bruce | |
dc.contributor.author | Bourlon, Evelise | |
dc.date.accessioned | 2023-06-20T04:07:47Z | |
dc.date.available | 2023-06-20T04:07:47Z | |
dc.date.issued | 2010-06-18 | |
dc.description | Copyright 2010 by the American Geophysical Union. This research was supported by grants from the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Atlantic Innovation Fund (ACOA-AIF). A. H. M. D. and M. B. S. are grateful for their support received from NSERC as a PGS-M and a PGS-D respectively. JFGR acknowledges support from projects CGL2008-06558-C02-01, MMARM-200800050084028 and MMARM-20080005008354. | |
dc.description.abstract | Heat fluxes in the continental subsurface were estimated from general circulation model (GCM) simulations of the climate of the last millennium and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions (BBCs) that are less than 10 m deep and thus may be thermodynamically restricted in the continental subsurface, we used an idealized land surface model (LSM) with a very deep BBC to estimate the potential for realistic subsurface heat storage in the absence of bottom boundary constraints. Results indicate that there is good agreement between observed fluxes and GCM simulated fluxes for the 1780-1980 period when the GCM simulated temperatures are coupled to the LSM with deep BBC. These results emphasize the importance of placing a deep BBC in GCM soil components for the proper simulation of the overall continental heat budget. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes lends additional support to the overall quality of the GCM (ECHO-G) paleoclimatic simulations. | |
dc.description.department | Depto. de Física de la Tierra y Astrofísica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) | |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada (NSERC) | |
dc.description.sponsorship | Atlantic Innovation Fund (ACOA - AIF) | |
dc.description.sponsorship | Ministerio de Medio Ambiente, Medio Rural y Marino de España (Ministerio de Medio Ambiente, Medio Rural y Marino de España (MARM), España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/36231 | |
dc.identifier.doi | 10.1029/2009JD013170 | |
dc.identifier.issn | 2169-897X | |
dc.identifier.officialurl | http://dx.doi.org/10.1029/2009JD013170 | |
dc.identifier.relatedurl | http://onlinelibrary.wiley.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44946 | |
dc.journal.title | Journal of geophysical research-atmospheres | |
dc.language.iso | eng | |
dc.publisher | American Geophysical Union | |
dc.relation.projectID | CGL2008-06558-C02-01 | |
dc.relation.projectID | MMARM-200800050084028 | |
dc.relation.projectID | MMARM-20080005008354 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 52 | |
dc.subject.keyword | Soil-temperature | |
dc.subject.keyword | Climate system | |
dc.subject.keyword | Art. | |
dc.subject.keyword | Simulation | |
dc.subject.keyword | Canada | |
dc.subject.ucm | Astrofísica | |
dc.subject.ucm | Astronomía (Física) | |
dc.title | Comparison of observed and general circulation model derived continental subsurface heat flux in the Northern Hemisphere | |
dc.type | journal article | |
dc.volume.number | 115 | |
dcterms.references | Alexeev, V. A., D. J. Nicolsky, V. E. Romanovsky, and D. M. Lawrence (2007), An evaluation of deep configurations in the CLM3 for improved representation of permafrost, Geophys. Res. Lett., 34, L09502, doi:10.1029/2007GL029536. Bekele, A., L. Kellman, and H. Beltrami (2007), Soil profile CO2 concentrations variations from forested and clear cut sites in Nova Scotia, Canada, For. Ecol. Manage., 242, 587–597, doi:10.1016/j.foreco.2007.01.088. Beltrami, H. (2002a), Earth’s long‐term memory, Science, 297, 206–207. Beltrami, H. (2002b), Climate from borehole data: Energy fluxes and temperatures since 1500, Geophys. Res. Lett., 29(23), 2111, doi:10.1029/2002GL015702. Beltrami, H., E. Bourlon, L. Kellman, and J. F. González Rouco (2006), Spatial patterns of ground heat gain in the northern hemisphere, Geophys. Res. Lett., 33, L06717, doi:10.1029/2006GL025676. Beltrami, H., J. E. Smerdon, H. N. Pollack, and S. Huang (2002), Continental heat gain in the global climate system, Geophys. Res. Lett., 29(8), 1167, doi:10.1029/2001GL014310. Bense, V., and H. Beltrami (2007), The impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies, J. Geophys. Res. 112, F04015, doi:10.1029/2006JF000703. Bense, V., and H. Kooi (2004), Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow, J. Geophys. Res., 109, B04103, doi:10.1029/2003JB002782. Bindoff, N. L., et al. (2007), Observations: Oceanic climate change and sea level, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, UK, and New York. Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., Oxford University Press, New York. Cermak, V., and L. Rybach (1982), Thermal conductivity and specific heat of minerals and rocks, in Landolt‐Bornstein; Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, edited by G. Angenheister, pp. 305–343, Springer‐Verlag, Berlin. Davin, E. L., N. de Noblet‐Ducoudré, and P. Friedlingstein, (2007), Impact of land cover change on surface climate: Relevance of the radiative forcing concept, Geophys. Res. Lett., 34, L13702, doi:10.1029/2007GL029678. Diochon, A., and L. Kellman (2008), Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophys. Res. Lett., 35, L14402, doi:10.1029/2008GL034795. Dirmeyer, P. A. (2000), Using a global soil wetness dataset to improve seasonal climate simulation, J. Clim., 13, 2900–2922. Ferguson, G., H. Beltrami, and A. Woodbury (2006), Perturbation of ground surface temperature reconstructions by groundwater flow, Geophys. Res. Lett., 33, L13708, doi:10.1029/2006GL026634. Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär (2007), Contribution of land‐atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068. González Rouco, J. F., H. von Storch, and E. Zorita (2003), Deep soil temperature as proxy for surface air‐temperature in a coupled model simulation of the last thousand years, Geophys. Res. Lett., 30(21), 2116, doi:10.1029/2003GL018264. González Rouco, J. F., H. Beltrami, E. Zorita, and H. von Storch (2006), Simulation and inversion of borehole temperature profiles in simulated climates: Spatial distribution and surface coupling, Geophys. Res. Lett., 33, L01703, doi:10.1029/2005GL024693. González Rouco, J. F., H. Beltrami, E. Zorita, and M. B. Stevens (2009), Borehole climatology: A discussion based on contributions from climate modeling Clim. Past Discuss., 4, 1–80. Goodrich, L. E. (1982), The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421–432. Hansen, J., et al. (2005), Earth’s energy imbalance: Confirmation and implications, Science, 308, 1431–1435. Huang, S. (2006), 1851–2004 annual heat budget of the continental landmasses, Geophys. Res. Lett., 33, L04707, doi:10.1029/2005GL025300. Jansen, E., et al. (2007), Palaeoclimate, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, UK, and New York. Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornbleh, and E. Roeckner (2008), Advancing decadal‐scale climate prediction in the North Atlantic sector, Nature 453, 84–88, doi:10.1032/nature06921. Kellman, L., H. Beltrami, and D. Risk (2007), Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada, Biogeochemistry, 82, 101–109, doi:10.1007/s10533–006–9056–0. Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky (2008), Sensitivity of a model projection of near‐surface permafrost degradation to soil column depth and representation of soil organic matter, J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883. Lawrence, D. M., and A. G. Slater (2005), A projection of severe near‐surface permafrost degradation during the 21st century, Geophys. Res. Lett., 32, L24401, doi:10.1029/2005GL025080. Lemke, P., J. Ren, R. B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R. H. Thomas, and T. Zhang (2007) Observations: Changes in snow, ice and frozen ground, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, UK, and New York. Legutke, S., and R. Voss (1999), The Hamburg Atmosphere‐Ocean Coupled Circulation Model ECHO‐G, Tech. Rep., No. 18, German Climate Computing Center (DKRZ), Hamburg. Levitus, S., J. Antonov, and T. Boyer (2005), Warming of the world ocean, 1955–2003, Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592. Levitus, S, J. I. Antonov, J. L. Wang, T. L. Delworth, K. W. Dixon, and A. J. Broccoli (2001), Anthropogenic warming of Earth’s climate system, Science, 292, 5515, 267–270. Lynch‐Stieglitz, M. (1994), The development and validation of a simple snow model for GISS GCM, J. Clim., 7, 1842–1822. MacDougall, A. H., J. F. González Rouco, M. B. Stevens, and H. Beltrami (2008), Quantification of subsurface heat storage in a GCM simulation, Geophys. Res. Lett., 35, L13702, doi:10.1029/2008GL034639. Meehl, G. A., et al. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, UK, and New York. Pielke, R. A., Sr. (2003), Heat storage within the Earth system. Bull. Am. Meteorol. Soc., 84, 331–335. Pollack, H. N., and J. E. Smerdon (2004), Borehole climate reconstructions: Spatial structure and hemispheric averages, J. Geophys. Res., 109, D11106, doi:10.1029/2003JD004163. Randall, D. A., et al. (2007), Climate models and their evaluation, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, UK and New York. Risk, D., L. Kellman, and H. Beltrami (2008), A new method for in‐situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO2. J. Geophys. Res., 113, G02018, doi:10.1029/2007JG000445. Risk, D., L. Kellman, and H. Beltrami (2002), Carbon dioxide in soil profiles: production and temperature dependence, Geophys. Res. Lett., 29(6), 1087, doi:10.1029/2001GL014002. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär (2006), Land‐atmosphere coupling and climate change in Europe, Nature, 443, doi:10.1038/nature0595. Smerdon, J. E., H. N. Pollack, V. Cermak, J. W. Enz, M. Kresl, J. Safanda, and J. F. Wehmiller (2004), Air‐ground temperature coupling and subsurface propagation of annual temperature signals, J. Geophys. Res., 109, D21107, doi:10.1029/2004JD005056. Smerdon, J. E., H. N. Pollack, J. W. Enz, and M. J. Lewis (2003), Conduction‐dominated heat transport of the annual temperature signal in soil, J. Geophys. Res., 108(B9), 2431, doi:10.1029/2002JB002351. Smerdon, J. E., and M. Stigelitz (2006), Simulation of heat transport in the Earth’s shallow subsurface: Lower‐boundary sensitivities, Geophys. Res. Lett., 33, L14402, doi:10.1029/2006GL026816. Smerdon, J. E., H. N. Pollack, V. Cermak, J. W. Enz, M. Kresl, J. Safanda, and J. F. Wehmiller (2006), Daily, seasonal and annual relationships between air and subsurface temperatures, J. Geophys. Res., 111, D07101, doi:10.1029/2004JD005578. Smith, W. H. F, and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293–305. Stendel, M., V. E. Romanovsky, J. H. Christensen, and T. Sazonova (2006), Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics, Global Planet. Change, 56, 203–214. Stevens, M. B., J. E. Smerdon, J. F. González Rouco, M. Stieglitz, and H. Beltrami (2007), Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations, Geophys. Res. Lett., 34, L02702, doi:10.1029/2006GL028546. Stevens, M. B., J. F. González Rouco, and H. Beltrami (2008) North American climate of the last millennium: Underground temperatures and model comparison, J. Geophys. Res., 113, F01008, doi:10.1029/2006JF000705. Stieglitz, M., and J. E. Smerdon (2007), Characterizing land‐atmosphere coupling and the implications for subsurface thermodynamics, J. Clim., 20(1), 21–37. Sun, S., and X. Zhang (2004), Effect if the lower boundary position of the Fourier Equation on the soil energy balance, Adv. Atmos. Sci., 21, 868–878. Sushama, L., R. Laprise, D. Caya, D. Verseghy, and M. Allard (2007), An RCM projection of soil thermal and moisture regimes for North American permafrost zones, Geophys. Res. Lett., 34, L20711 doi:10.1029/2007GL031385. Sushama, L., R. Laprise, and M. Allard (2006), Modeled current and future soil thermal regime for northeast Canada, J. Geophys. Res., 111, D18111, doi:10.1029/2005JD007027. Zhu, J., and X. Z. Liang (2005), Regional climate model simulations of U.S. soil temperature and moisture during 1982–2002, J. Geophys. Res., 110, D24110, doi:10.1029/2005JD006472. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b0dda0f2-5a69-45d6-8aec-ccc99f2dc468 | |
relation.isAuthorOfPublication.latestForDiscovery | b0dda0f2-5a69-45d6-8aec-ccc99f2dc468 |
Download
Original bundle
1 - 1 of 1