Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Applications of maximum queue lengths to call center management

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorEconomou, A.
dc.contributor.authorGómez-Corral, Antonio
dc.date.accessioned2023-06-20T09:35:11Z
dc.date.available2023-06-20T09:35:11Z
dc.date.issued2007-04
dc.description.abstractThis paper deals with the distribution of the maximum queue length in two-dimensional Markov models. In this framework, two typical assumptions are: (1) the stationary regime, and (2) the system homogeneity (i.e., homogeneity of the underlying infinitesimal generator). In the absence of these assumptions, the computation of the stationary queue length distribution becomes extremely intricate or, even, intractable. The use of maximum queue lengths provides an alternative queueing measure overcoming these problems. We apply our results to some problems arising from call center management.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGINV
dc.description.sponsorshipUniversity of Athens
dc.description.sponsorshipGreek Ministry of Education
dc.description.sponsorshipEuropean Union Program PYTHAGORAS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15425
dc.identifier.doi10.1016/j.cor.2005.05.020
dc.identifier.issn0305-0548
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S030505480500170X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49970
dc.issue.number4
dc.journal.titleComputers and Operations Research
dc.language.isoeng
dc.page.final996
dc.page.initial983
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.projectIDBFM2002-02189
dc.relation.projectIDELKE/70/4/6415
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordCall center
dc.subject.keywordMaximum queue length
dc.subject.keywordLevel dependent quasi-birth-and-death processes
dc.subject.keywordCustomer behavior
dc.subject.keywordRouting rules
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleApplications of maximum queue lengths to call center management
dc.typejournal article
dc.volume.number34
dcterms.referencesGans N, Koole G, Mandelbaum A. Telephone call centers: tutorial, review and research prospects. Manufacturing and Service Operations Management 2003;5:79–141. Koole G, Mandelbaum A. Queueing models of call centers: an introduction. Annals of Operations Research 2002;113:41–59. Brandt A, Brandt M, Spahl G,Weber D. Modelling and optimization of call distribution systems. In: Ramaswami,V,Wirth, PE. editors, Proceedings of the 15th International Teletraffic Congress. Elsevier Science B.V., 1997. p.133–144. Srinivasan R, Talim J, Wang J. Performance analysis of a call center with interactive voice response units. Top 2004;12:91–110. Aguir S, Karaesmen F, Ak¸sin OZ, Chauvet F. The impact of retrials on call center performance. OR Spectrum 2004;26:353–76. WhittW. Improving service by informing customers about anticipated delays. Management Science 1999;45:192–207. Falin GI, Templeton JGC. Retrial queues. London: Chapman and Hall; 1997. Artalejo JR. Accessible bibliography on retrial queues. Mathematical and Computer Modelling 1999;30:1-6. Serfozo RF. Extreme values of birth and death processes and queues. Stochastic Processes and their Applications 1988;27:291–306. Neuts MF. The distribution of the maximum length of a Poisson queue during a busy period. Operations Research 1964;12:281–5. Masi DMB, Fischer MJ, Harris CM. Computation of steady-state probabilities for resource-sharing call-center queueing systems. Stochastic Models 2001;17:191–214. Shumsky RA. Approximation and analysis of a call center with flexible and specialized servers. OR Spectrum 2004;26:307–30. Latouche G, Ramaswami V. Introduction to Matrix Analytic Methods in Stochastic Modeling. Philadelphia: ASA-SIAM;1999. Artalejo JR, Economou A, Lopez-Herrero MJ. Algorithmic analysis of the maximum queue length in a busy period for the M/M/c retrial queue. INFORMS Journal on Computing, in revision. Green L. A queueing system with general-use and limited-use servers. Operations Research 1985;33:168–82. StanfordDA, GrassmannWK.The bilingual server system: a queueing model featuring fully and partially qualified servers. INFOR 1993;31:261–77. Ciarlet PG. Introduction to Numerical Linear Algebra and Optimization. Cambridge: Cambridge University Press; 1989.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta23.pdf
Size:
221.6 KB
Format:
Adobe Portable Document Format

Collections