Supramolecular block copolymers from tricarboxamides. Biasing co-assembly by the incorporation of pyridine rings
Loading...
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Citation
López‐Gandul, Lucía, et al. «Supramolecular Block Copolymers from Tricarboxamides. Biasing Co‐assembly by the Incorporation of Pyridine Rings». Angewandte Chemie International Edition, vol. 62, n.o 37, septiembre de 2023, p. e202308749. https://doi.org/10.1002/anie.202308749.
Abstract
The synthesis of a series of triangular-shaped tricarboxamides endowed with three picoline or nicotine units (compounds 2 and 3, respectively) or just one nicotine unit (compound 4) is reported, and their selfassembling features investigated. The pyridine rings make compounds 2–4 electronically complementary with our previously reported oligo(phenylene ethynylene)tricarboxamides (OPE-TA) 1 to form supramolecular copolymers. C3-symmetric tricarboxamide 2 forms highly stable intramolecular five-membered pseudocycles that impede its supramolecular polymerization into poly-2 and the co-assembly with 1 to yield copolymer poly-1-co-2. On the other hand, C3-symmetric tricarboxamide 3 readily forms poly-3 with great stability but unable to form helical supramolecular polymers despite the presence of the peripheral chiral side chains. The copolymer poly-1-co-3 can only be obtained by a previous complete disassembly of the constitutive homopolymers in CHCl3. Helical poly-1-co-3 arises in a process involving the transfer of the helicity from racemic poly-1 to poly-3, and the amplification of asymmetry from chiral poly-3 to poly-1. Importantly, C2v symmetric 4, endowed with only one nicotinamide moiety and three chiral side chains, self-assembles into a P-type helical supramolecular polymer (poly-4) in a thermodynamically controlled cooperative process. The combination of poly-1 and poly-4 generates chiral supramolecular copolymer poly-1-co-4, whose blocky microstructure has been investigated by applying the previously reported supramolecular copolymerization model.













