Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorVargas Balbuena, Javier
dc.contributor.authorGonzález Fernández, Luis M.
dc.contributor.authorBelenguer Dávila, Tomás
dc.date.accessioned2023-06-20T03:35:18Z
dc.date.available2023-06-20T03:35:18Z
dc.date.issued2010-05-01
dc.description© 2010 Optical Society of America. We thank the Ministerio de Ciencia e Innovación of Spain for the financial support of this work given by project “Contribución española al instrumento MIRI del JWST: desarrollo del simulador criogénico del telescopio” with reference ESP2004-01049.
dc.description.abstractIn the optical quality measuring process of an optical system, including diamond-turning components, the use of a laser light source can produce an undesirable speckle effect in a Shack-Hartmann (SH) CCD sensor. This speckle noise can deteriorate the precision and accuracy of the wavefront sensor measurement. Here we present a SH centroid detection method founded on computer-based techniques and capable of measurement in the presence of strong speckle noise. The method extends the dynamic range imaging capabilities of the SH sensor through the use of a set of different CCD integration times. The resultant extended range spot map is normalized to accurately obtain the spot centroids. The proposed method has been applied to measure the optical quality of the main optical system (MOS) of the mid-infrared instrument telescope smulator. The wavefront at the exit of this optical system is affected by speckle noise when it is illuminated by a laser source and by air turbulence because it has a long back focal length (3017 mm). Using the proposed technique, the MOS wavefront error was measured and satisfactory results were obtained.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22784
dc.identifier.doi10.1364/AO.49.002409
dc.identifier.issn0003-6935
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.49.002409
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43969
dc.issue.number13
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final2416
dc.page.initial2409
dc.publisherThe Optical Society of America
dc.relation.projectIDESP2004-01049
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordWave-Front Reconstruction
dc.subject.keywordSensor
dc.subject.keywordAberrations
dc.subject.keywordEye
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleShack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques
dc.typejournal article
dc.volume.number49
dcterms.references1. J. Sheldakova, A. Kudryashov, V. Zavalova, and P. Romanov, “Shack-Hartmann wavefront sensor versus Fizeau interferometer for laser beam measurements,” Proc. SPIE 7194 71940B (2009). 2. B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, “Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor,” Appl. Opt. 34, 4186–4195 (1995). 3. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). 4. Y. Hongbin, Z. Guangya, C. Fook Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech, Microeng. 18 105017 (2008). 5. Y. Carmon and E. N. Ribak, “Phase retrieval by demodulation of a Hartmann-Shack sensor,” Opt. Commun. 215, 285–288 (2003). 6. J. Ares, T. Mancebo, and S. Bará, “Position and displacement sensing with Shack–Hartmann wave-front sensors,” Appl. Opt. 39, 1511–1520 (2000). 7. R. C. González and R. E. Woods, Digital Image Processing (Prentice-Hall, 2007). 8. G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with OpenCV Library (O’Reilly Media, 2008). 9. O. Soloviev and G. Vdovin, “Hartmann-Shack test with random masks for modal wavefront reconstruction,” Opt. Express 13, 9570–9584 (2005). 10. A. Talmi and E. N. Ribak, “Wavefront reconstruction from its gradients,” J. Opt. Soc. Am. A 23, 288–297 (2006). 11. M. Born and E. Wolf, Principles of Optics (Pergamon, 1991). 12. V. N. Mahajan, “Zernike polynomials and aberrations balancing,” Proc. SPIE 5173, 1–17 (2003). 13. V. Albanis, E. Ribak, and Y. Carmon, “Reduction of speckles in retinal reflection,” Appl. Phys. Lett. 91, 054104 (2007). 14. A. V. Larichev, P. V. Ivanov, I. G. Iroshnikov, and V. I. Shmalgauzen, “Measurement of eye aberrations is a speckle field,” Quantum Electron. 31, 1108–1112 (2001). 15. J. Liang, B. Grimm, S. Goels, and J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). 16. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). 17. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006). 18. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer-Verlag, 1978). 19. C. Kiikka, D. R. Neal, J. Kincade, R. Bernier, T. Hull, D. Chaney, S. Farrer, J. Dixson, A. Causey, and S. Strohl, “The JWST infrared scanning Shack Hartmann system: a new in-process way to measure large mirrors during optical fabrication at Tinsley,” Proc SPIE 6265 62653D (2006). 20. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in SIGGRAPH (ACM Press, 1997), pp. 369–378. 21. J. Vargas, T. Koninckx, J. A. Quiroga, and L. V. Gool, “Threedimensional measurement of microchips using structured light techniques,” Opt. Eng. 47, 053602 (2008). 22. J. A. Quiroga and M. Servín, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224, 221–227 (2003). 23. D. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998). 24. E. Reinhard, G.Ward, and S. Pattanaik, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting, The Morgan Kaufmann Series in Computer Graphics (Morgan Kaufmann, 2005).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication6ccb1e60-8b61-4b23-8a0a-09af30f7b795
relation.isAuthorOfPublication5a8cfd67-3d9a-48ad-8819-2e3b9e7da48d
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA24.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

Collections