Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a nonlinear Schrodinger equation with a localizing effect

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorBegout, Pascal
dc.date.accessioned2023-06-20T09:35:08Z
dc.date.available2023-06-20T09:35:08Z
dc.date.issued2006-04-01
dc.description.abstractWe consider the nonlinear Schrodinger equation associated to a singular potential of the form a vertical bar u vertical bar(-(1-m))u + bu, for some In is an element of (0, 1), on a possible unbounded domain. We use some suitable energy methods to prove that if Re(a) + Im(a) > 0 and if the initial and right hand side data have compact support then any possible solution must also have a compact support for any t > 0. This property contrasts with the behavior of solutions associated to regular potentials (m >= 1). Related results are proved also for the associated stationary problem and for self-similar Solution on the whole space and potential a vertical bar u vertical bar(-(1-m)u). The existence of solutions is obtained by some compactness methods under additional conditions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipEC
dc.description.sponsorshipDGISGPI (Spain).
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15411
dc.identifier.doi10.1016/j.crma.2006.01.027
dc.identifier.issn1631-073X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S1631073X06000550
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49968
dc.issue.number7
dc.journal.titleComptes Rendus Mathematique
dc.language.isoeng
dc.page.final463
dc.page.initial459
dc.publisherElsevier
dc.relation.projectIDRTN HPRN-CT-2002-00274
dc.relation.projectIDMTM2004-07590-C03-01
dc.rights.accessRightsrestricted access
dc.subject.cdu514.764.274
dc.subject.keywordsingular complex potentials
dc.subject.ucmAnálisis matemático
dc.subject.ucmGeometría diferencial
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn a nonlinear Schrodinger equation with a localizing effect
dc.typejournal article
dc.volume.number342
dcterms.referencesS.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem. J. Math. Fluid Mech. 6 (2004) 439–461. S.N. Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems, Birkhäuser Boston Inc., Boston, MA, 2002. P. Bégout, J.I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations, in press. P. Bégout, J.I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, in press. H. Brezis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979) 137–151. T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, New York University, Courant Institute of Mathematical Science, New York, 2003. O. Kavian, F.B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J. 41 (1993) 151–173. B.J. LeMesurier, Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularizations, Physica D 138 (2000) 334–343. V. Liskevitch, P. Stollmann, Schrödinger operators with singular complex potentials as generators: existence and stability, Semigroup Forum 60 (2000) 337–343. P. Rosenau, S. Schochet, Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit. Chaos 15 (2005) 1–18. C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999. I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., vol. 75, Longman Scientific & Technical, Harlow, 1987.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
46.pdf
Size:
112.61 KB
Format:
Adobe Portable Document Format

Collections