Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Measurement of the thermal conductivity of clays used in pelotherapy by the multi-current hot-wire technique

dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorLuis Hita, Jorge
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorLegido, José Luis
dc.date.accessioned2023-06-20T03:42:47Z
dc.date.available2023-06-20T03:42:47Z
dc.date.issued2010-11
dc.description© Elsevier B.V. The authors gratefully acknowledge the financial support of the ""Consellería de Innovación e Industria de la Xunta de Galicia"" (project PGIDIT07PXIB310190PR)
dc.description.abstractWe measured using the multi-current hot-wire method the thermal conductivity (lambda) of two different clay pastes suitable to be used as peloids The same wire and system was used to measure the lambda of water and the results were compared with literature data Special attention was paid to statistical data analysis The obtained lambda values for the clay pastes are higher than the lambda of water at the same temperature.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsellería de Innovación e Industria de la Xunta de Galicia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26262
dc.identifier.doi10.1016/j.clay.2010.08.012
dc.identifier.issn0169-1317
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.clay.2010.08.012
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44300
dc.issue.number3
dc.journal.titleApplied clay science
dc.page.final426
dc.page.initial423
dc.publisherElsevier
dc.relation.projectIDPGIDIT07PXIB310190PR
dc.rights.accessRightsmetadata only access
dc.subject.cdu536
dc.subject.keywordAbsolute measurements
dc.subject.keywordWater
dc.subject.keywordBentonites
dc.subject.keywordMixtures
dc.subject.keywordDensity
dc.subject.keywordGlycols
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleMeasurement of the thermal conductivity of clays used in pelotherapy by the multi-current hot-wire technique
dc.typejournal article
dc.volume.number50
dcterms.referencesH.M. Abuel-Naga, D.T. Bergado, A. Bouazza, Thermal conductivity evolution of saturated clay under consolidation process, Int. J. Geomech., 8 (2008), pp. 114–122 N.H. Abu-Hamdeh, R.C. Reeder, Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Am. J., 64 (2000), p. 1285 M.J. Assael, E. Charitidou, C. Nieto de Castro, W. Wakeham, The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot wire method, Int. J. Thermophys., 8 (1987), p. 663 M.J. Assael, E. Charatidou, S. Augustinianus, W.A. Wakeham, Absolute measurements of the thermal conductivity mixtures of alkene-glycols with water, Int. J. Thermophys., 10 (1989), p. 1127 A.M. Beer, A. Grozeva, P. Sagorchev, J. Lukanov, Comparative study of the thermal properties of mud and peat solutions applied in clinical practice, Biomed. Tech., 48 (2003), pp. 301–305 A. Beziat, M. Dardaine, V. Gabis, Effect of compaction pressure and water content on the thermal conductivity of some natural clays, Clays Clay Miner., 36 (1988), pp. 462–466 D. Bohne, S. Fischer, E. Obermeier, Thermal conductivity, density, viscosity and Prandtl numbers of ethylene glycol-water mixtures, Ber. Bunsenges. Phys. Chem., 88 (1984), p. 739 S. Cara, G. Carcangiu, G. Padalino, M. Palomba, M. Tamanini, The bentonites in pelotherapy: thermal properties of clay pastes from Sardinia (Italy), Appl. Clay Sci., 16 (2000), pp. 125–132 H.S. Carslaw, J.C. Jaeger, Conduction of heat in solids, Oxford Univ. Press, Oxford (1959) D.A. de Vries, Thermal properties of soils, W.R. van Wijk (Ed.), Physics of Plant Environment, North-Holland, Amsterdam (1963), pp. 210–235 J. Kestin, W.A. Wakeham, Contribution to theory of transient hot-wire technique for thermal-conductivity measurements, Physica A, 92 (1978), pp. 102–116 M. Khayet, J.M. Ortiz de Zárate, Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols, Int. J. Thermophys., 26 (2005), pp. 637–646 J.L. Legido, C. Medina, M.L. Mourelle, M.I. Carretero, M. Pozo, Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy, Appl. Clay Sci., 36 (2007), pp. 148–160 Y. Nagasaka, A. Nagashima, Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot-wire method, Rev. Sci. Instrum., 52 (1981), p. 229 A.M. Tang, Y.J. Cui, T.T. Le, A study on the thermal conductivity of compacted bentonites, Appl. Clay Sci., 41 (2008), pp. 181–189 J.R. Vázquez Peñas, J.M. Ortiz de Zárate, M. Khayet, Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method, J. Appl. Phys., 104 (2008), p. 044314 M.V. Villar, L. Pérez del Villar, P.L. Martín, M. Pelayo, A.M. Fernández, A. Garralón, J. Cuevas, S. Leguey, E. Caballero, F.J. Huertas, C. Jiménez de Cisneros, J. Linares, E. Reyes, A. Delgado, J.M. Fernández Soler, J. Astudillo, The study of spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress, J. Iberian Geol., 32 (2006), pp. 15–36 C. Viseras, C. Aguzzi, P. Cerezo, A. López Galindo, Uses of clay minerals in semisolid health care and therapeutic products, Appl. Clay Sci., 36 (2007), pp. 37–50
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Collections