Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dynamical fluctuations as the origin of a surface phase transition in Sn/Ge(III)

dc.contributor.authorAvila, J.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorMichel, E. G.
dc.contributor.authorAsensio, M. C.
dc.contributor.authorLeLay, G.
dc.contributor.authorOrtega Villafuerte, Yanicet
dc.contributor.authorPerez, R.
dc.contributor.authorFlores, F.
dc.date.accessioned2023-06-20T19:14:02Z
dc.date.available2023-06-20T19:14:02Z
dc.date.issued1999-01-11
dc.description© 1999 The American Physical Society. This work was financed by DGICYT (Spain) (Grants No. PB-97-0031, No. PB-97-1199, and No. PB92–0168C). We thank the European Union (A. M. and E. G. M.) and Eusko Jaurlaritza (A. M.) for financial support.
dc.description.abstractThe Sn/Ge(111) interface has been investigated across the 3 x 3 -->, root 3 x root 3 R30 degrees phase transition using core level and valence band photoemission spectroscopies. We find, both above and below the transition, two different components in the Sn 4d core level and a bond splitting in the surface state crossing the Fermi energy. Theoretical calculations show that these two effects are due to the existence of two structurally different kinds of Sn atoms that fluctuate at room temperature between two positions and are stabilized in a 3 x 3 structure at low temperature.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipEuropean Union
dc.description.sponsorshipEusko Jaurlaritza
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28618
dc.identifier.doi10.1103/PhysRevLett.82.442
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.82.442
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59420
dc.issue.number2
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final445
dc.page.initial442
dc.publisherAmerican Physical Society
dc.relation.projectIDPB-97-0031
dc.relation.projectIDPB-97-1199
dc.relation.projectIDPB92–0168C
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCharge-Density-Wave
dc.subject.keywordSn/Ge(111)
dc.subject.keywordPhotoemission
dc.subject.keywordSpectroscopy
dc.subject.keywordDimers
dc.subject.ucmFísica de materiales
dc.titleDynamical fluctuations as the origin of a surface phase transition in Sn/Ge(III)
dc.typejournal article
dc.volume.number82
dcterms.references[1] B. N. J. Persson, Surf. Sci. Rep. 15, 1 (1992). [2] J. Carpinelli et al., Nature (London) 381, 398 (1996). [3] T. Ichikawa, Solid State Commun. 46, 827 (1983). [4] R. Feidenhans’l et al., Surf. Sci. 178, 927 (1986). [5] E. Tosatti, in Electronic Surface and Interface States in Metallic Systems, edited by E. Bertel and M. Donath (World Scientific, Singapore, 1995), and references therein. [6] S. D. Kevan, J. Electron Spectrosc. Relat. Phenom. 75, 175 (1995), and references therein. [7] J. M. Carpinelli et al., Phys. Rev. Lett. 79, 2859 (1997). [8] A. Goldoni and S. Modesti, Phys. Rev. Lett. 79, 3266 (1997). [9] A. P. Baddorf et al., Phys. Rev. B 57, 4579 (1998). [10] A. Mascaraque et al., Phys. Rev. B 57, 14 758 (1998). [11] For a recent review, see N. Mårtensson and A. Nilsson, J. Electron. Spectrosc. Relat. Phenom. 75, 209 (1995). [12] M. Göthelid et al., Surf. Sci. 328, 80 (1995). [13] Spin-orbit splitting (1.04 eV) and branching ratio (0.7 eV) are taken from a thicker Sn film. [14] S. B. DiCenzo et al., Phys. Rev. B 31, 2330 (1985). [15] A. A. Demkov et al., Phys. Rev. B 52, 1618 (1995). [16] CETEP, L. J. Clarke, I. Stich, and M. C. Payne, Comput. Phys. Commun. 72, 14 (1992). [17] We used 16 special k-points in the Brillouin zone. Tests with 4, 16, and 36 special k-points show that the results are well converged. A PW cutoff of 12 Ry has been used; increasing the cutoff to 15 Ry changes the energy differences in less than 1 meV. [18] O. Pankratov and M. Scheffler, Phys. Rev. Lett. 70, 351 (1993). [19] A. Levy–Yeyati et al., Appl. Surf. Sci. 104/105, 248 (1996). [20] E. Landemark et al., Phys. Rev. Lett 69, 1588 (1992). [21] P. C. Weakliem, G. W. Smith, and A. Carter, Surf. Sci. 232, L219 (1990). [22] E. Pehlke and M. Scheffler, Phys. Rev. Lett. 71, 2338 (1993). [23] A. Mascaraque et al. (to be published).
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication2c56123a-d96e-428d-83ce-d134110a2ef3
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 49libre.pdf
Size:
624.1 KB
Format:
Adobe Portable Document Format

Collections