Artifacts for Stamping Symmetric Designs.
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Tejada Jiménez, Débora María | |
dc.contributor.author | Toro Villegas, Margarita María | |
dc.date.accessioned | 2023-06-20T00:18:39Z | |
dc.date.available | 2023-06-20T00:18:39Z | |
dc.date.issued | 2011-04 | |
dc.description.abstract | It is well known that there are 17 crystallographic groups that determine the possible tessellations of the Euclidean plane. We approach them from an unusual point of view. Corresponding to each crystallographic group there is an orbifold. We show how to think of the orbifolds as artifacts that serve to create tessellations. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Fulbright Colombia | |
dc.description.sponsorship | COLCIENCIAS | |
dc.description.sponsorship | Universidad Nacional de Colombia | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16947 | |
dc.identifier.doi | 10.4169/amer.math.monthly.118.04.327 | |
dc.identifier.issn | 0002-9890 | |
dc.identifier.officialurl | http://www.jstor.org/stable/10.4169/amer.math.monthly.118.04.327 | |
dc.identifier.relatedurl | http://www.jstor.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42374 | |
dc.issue.number | 4 | |
dc.journal.title | American Mathematical Monthly | |
dc.language.iso | eng | |
dc.page.final | 343 | |
dc.page.initial | 327 | |
dc.publisher | Mathematical Association of America | |
dc.relation.projectID | MTM2006-0825 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | crystallographic groups | |
dc.subject.keyword | fundamental domains | |
dc.subject.keyword | Moebius strip | |
dc.subject.keyword | orbifolds | |
dc.subject.keyword | symmetry group | |
dc.subject.keyword | tesselations | |
dc.subject.ucm | Cristalografía (Química) | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 2211.04 Cristalografía | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Artifacts for Stamping Symmetric Designs. | |
dc.type | journal article | |
dc.volume.number | 118 | |
dcterms.references | F. Bonahon and L. Siebenmann, The classification of Seifert fibred 3-orbifolds, in Low Dimensional Topology–Chelwood Gate 1982, London Math. Soc. Lecture Note Ser., vol. 95, Cambridge University Press, Cambridge, 1985, 19–85. M. V. Gutiérrez-Santos, Notas de Geometría, Universidad Nacional de Colombia, Bogotá, 1992. H. M. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro, Dise~nos geométricos en la obra de Escher, 2009 (preprint). C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy (after J. D. Dana), 21st rev. ed., John Wiley, New York, 1999. J. M. Montesinos, Classical Tessellations and Three-Manifolds, Springer-Verlag, Berlin, 1987. J. M. Montesinos, Calidoscopios y 3-Variedades, Universidad Nacional de Colombia, Bogotá, 2003. J. M. Montesinos, Geometría en los Mosaicos del Palacio de la Alhambra de Granada, Conferencia, Cátedra Pedro Nel Gómez, Centro Audiovisual de la Universidad Nacional de Colombia Sede Medellín, Colombia, 2005. J. M. Montesinos, La cristalografía geométrica, in Horizontes Culturales. Las Fronteras de la Ciencia, Real Academia de las Ciencias Exactas, Físicas y Naturales de Espa~na, eds., Editorial Espasa, Madrid, 1999, 97–112. A. I. Ramírez-Galarza and J. Seade, Introduction to Classical Geometries, Birkhäuser, Berlin, 2002. D. Seymour and J. Britton, Introduction to Tessellations, Dale Seymour, Palo Alto, CA, 1989. W. Thurston, Three-Dimensional Geometry and Topology, vol. 1, S. Levy, ed., Princeton University Press, Princeton, NJ, 1997 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1