Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Portability Study of an OpenCL Algorithm for Automatic Target Detection in Hyperspectral Images

dc.contributor.authorGarcía, Carlos
dc.contributor.authorPlaza, Antonio
dc.contributor.authorBernabé García, Sergio
dc.contributor.authorIgual Peña, Francisco Daniel
dc.contributor.authorBotella Juan, Guillermo
dc.contributor.authorPrieto Matías, Manuel
dc.date.accessioned2025-01-28T10:50:42Z
dc.date.available2025-01-28T10:50:42Z
dc.date.issued2019
dc.description.abstractIn the last decades, the problem of target detection has received considerable attention in remote sensing applications. When this problem is tackled using hyperspectral imageswith hundreds of bands, the use of high-performance computing (HPC) is essential. One of the most popular algorithms in thehyperspectral image analysis community for this purpose is the automatic target detection and classification algorithm (ATDCA). Previous research has already investigated the mapping of ATDCA on HPC platforms such as multicore processors, graphics processing units (GPUs), and field-programmable gate arrays (FPGAs), showing impressive speedup factors (after careful finetuning) that allow for its exploitation in time-critical scenarios. However, the lack of standardization resulted in most implementations being too specific to a given architecture, eliminating (or at least making extremely difficult) code reusability across different platforms. In order to address this issue, we present a portability study of an implementation of ATDCA developed using the open computing language (OpenCL). We focus on cross-platform parameters such as performance, energy consumption, and code design complexity, as compared to previously developed (handtuned) implementations. Our portability study analyzes different strategies to expose data parallelism as well as enable the efficient exploitation of complex memory hierarchies in heterogeneous devices. We also conduct an assessment of energy consumption and discuss metrics to analyze the quality of our code. The conducted experiments—using synthetic and real hyperspectral data sets collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) and NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)—demonstrate, for the first time in the literature, that portability across different HPC platforms can be achieved for real-time target detection in hyperspectral missions.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1109/TGRS.2019.2927077
dc.identifier.officialurlhttps://dx.doi.org/10.1109/TGRS.2019.2927077
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116532
dc.journal.titleIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
dc.language.isoeng
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.keywordAutomatic target detection and classification algorithm (ATDCA)
dc.subject.keywordCode quality
dc.subject.keywordEnergy consumption
dc.subject.keywordHighperformance computing (HPC)
dc.subject.keywordHyperspectral imaging
dc.subject.keywordOpen computing language (OpenCL)
dc.subject.keywordPortability
dc.subject.ucmHardware
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titlePortability Study of an OpenCL Algorithm for Automatic Target Detection in Hyperspectral Images
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication092818da-fd6a-4d1f-ba39-7e6098841e99
relation.isAuthorOfPublicatione1ed9960-37d5-4817-8e5c-4e0e392b4d66
relation.isAuthorOfPublicationf94b32c6-dff7-4d98-9c7a-00aad48c2b6a
relation.isAuthorOfPublication5d3f6717-1495-4217-853c-8c9c75d56620
relation.isAuthorOfPublication.latestForDiscovery092818da-fd6a-4d1f-ba39-7e6098841e99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Portability_Study_of_an_OpenCL_Algorithm_for_Automatic_Target_Detection_in_Hyperspectral_Images.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format

Collections