Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelos para el control de epidemias infecciosas: el impacto de la vacunación

dc.contributor.advisorCarpio, Ana
dc.contributor.authorMuñoz Visedo, Javier
dc.date.accessioned2023-06-17T10:56:55Z
dc.date.available2023-06-17T10:56:55Z
dc.date.defense2021
dc.date.issued2021-02-25
dc.degree.titleGrado en matemáticas
dc.description.abstractEn este trabajo se realiza una revisión del modelo compartimental que contempla cuarentenas, hospitalizaciones y vacunación imperfecta propuesto por Safi, M. A. et al (2011) y se ratifican las conclusiones de este artículo. A este n, se establece un marco teórico que aborda conceptos claves de teoría de estabilidad, variedades centrales y bifurcación subcrítica. El modelo objeto de estudio presenta la coexistencia de un equilibrio libre de infección y un equilibrio endémico por debajo del umbral R0 = 1, poniendo en peligro la erradicación. Se proporcionan dos cuantificadores para la evaluación de la vacunación, buscando evitar el efecto pernicioso de una vacuna poco eficaz en la dinámica del modelo. Finalmente, se propone y se realiza un breve análisis del modelo modificado para una población antivacunas constante.
dc.description.abstractThe compartmental model that contemplates quarantines, hospitalizations and imperfect vaccination proposed by Safi, M. A. et al (2011) is reviewed and the authors conclusions get ratiffed. Towards this, a proper theoretical framework that addresses key concepts of stability theory, central manifolds, and backward bifurcation is stablished. The model studied presents backward bifurcation, showing the coexistence of an disease free equilibrium and an endemic equilibrium below the threshold R0 = 1. Two quantifiers are provided for the vaccine assesment in order to avoid the harmful effect of a poorly effective vaccine on the dynamics of the model. Finally, I propose and carry out a brief analysis of a modiffication of the model with a constant anti-vaccine population.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73616
dc.identifier.urihttps://hdl.handle.net/20.500.14352/10589
dc.language.isospa
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.cdu616-036.22
dc.subject.cdu615.371
dc.subject.keywordBifurcación subcritica
dc.subject.keywordModelos compartimentales
dc.subject.keywordVacuna
dc.subject.keywordCuarentena
dc.subject.keywordBackward bifurcation
dc.subject.keywordEpidemics
dc.subject.keywordModels
dc.subject.keywordVaccine
dc.subject.keywordQuarantine
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.ucmMedicina
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco32 Ciencias Médicas
dc.titleModelos para el control de epidemias infecciosas: el impacto de la vacunación
dc.typebachelor thesis
dcterms.references[1] Beraud, G., (2018). Mathematical models and vaccination strategies, Vaccine: 36 5366{5372. [2] Castillo-Chavez, C., Song, B., (2004). Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering: 2(1) 361{404. [3] Demicheli V., Rivetti A., Debalini M. G., Di Pietrantonj C., (2013). Vaccines for measles, mumps and rubella in children, Evid.-Based Child Health: 8(6) 2076{2238. [4] Gómez Espelosín, F. J., (2001). Historia de Grecia Antigua, Tres Cantos: Ediciones Akal. [5] Hale, J.K., (1980). Ordinary Differential Equations, Malabar (Florida): Krieger. [6] Harling R., White J. M., Ramsay M. E., Macsween K.F., van den Bosch C., (2005). The effectiveness of the mumps component of the MMR vaccine:a case control study, Vaccine: 23 4070-4074. [7] LaSalle, J. P., (1960). Some Extensions of Liapunov's Second Method, IEEE Transactions on Circuits and Systems I-regular Papers: 7 520-527. [8] López-Moreno, S., Garrido-Latorre F., Hernández-Avila, M. (2000). Desarrollo histórico de la epidemiología: su formación como disciplina científica, Salud pública de Mexico: 42(2) 133-143. [9] Safi, M. A., Gumel, A. B., (2011). Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Computers and Mathematics with Applications: 61 3044-3070. [10] Scherer, A., McLean, A., (1980). Mathematical models of vaccination, British Medical Bulletin: 62 187-199. [11] Smith, H. L., Waltman, P. (1995). The theory of the chemostat : dynamics of microbial competition, Nueva York: Cambridge University Press. [12] Van den Driessche, P., Watmough, J., (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences:180 29-48. [13] Wiggins, S., Watmough, J., (1997). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Nueva York: Springer-Verlag. [14] World Health Organization (2020). Global Tuberculosis Report, Geneva: World Health Organization.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Javier_Muñoz_Visedo_tfg.pdf
Size:
764.7 KB
Format:
Adobe Portable Document Format