Gold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response
dc.contributor.author | Gandhi, Hemi H. | |
dc.contributor.author | Tran, Tuan T. | |
dc.contributor.author | Kalchmair, S. | |
dc.contributor.author | Pastor Pastor, David | |
dc.contributor.author | Smilie, L. A. | |
dc.contributor.author | Mailoa, Jonathan P. | |
dc.contributor.author | Milazzo, Ruggero | |
dc.contributor.author | Napolitani, Enrico | |
dc.contributor.author | Loncar, Marco | |
dc.contributor.author | Williams, James S. | |
dc.contributor.author | Aziz, Michael J. | |
dc.contributor.author | Mazur, Eric | |
dc.date.accessioned | 2023-06-17T08:21:57Z | |
dc.date.available | 2023-06-17T08:21:57Z | |
dc.date.issued | 2020-12-16 | |
dc.description.abstract | Hyperdoping germanium with gold is a potential method to produce room-temperature short-wavelength-infrared radiation (SWIR; 1.4–3.0μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-band-gap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications. | |
dc.description.abstract | Hyperdoping germanium with gold is a potential method to produce room-temperature short-wavelength-infrared radiation (SWIR; 1.4–3.0μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-band-gap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Department of Defense (DoD) | |
dc.description.sponsorship | National Defense Science and Engineering Graduate Fellowship (NDSEG) Program | |
dc.description.sponsorship | Directed Energy Processing Society Graduate Fellowship | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades | |
dc.description.sponsorship | Gobierno regional de Madrid con los proyectos FEDER | |
dc.description.sponsorship | US Air Force Office of Scientific Research | |
dc.description.sponsorship | National Science Foundation | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70269 | |
dc.identifier.issn | 2331-7019 | |
dc.identifier.officialurl | https://doi.org/10.1103/PhysRevApplied.15.064058 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/6774 | |
dc.issue.number | 064051 | |
dc.journal.title | Physical review applied | |
dc.language.iso | spa | |
dc.page.final | 11 | |
dc.page.initial | 1 | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | DGE 0946799 | |
dc.relation.projectID | EX-2010-0662 | |
dc.relation.projectID | RYC-2014-16936 | |
dc.relation.projectID | TEC2017-84378-R | |
dc.relation.projectID | MADRID-PV2 P-2018/EMT-4308 | |
dc.relation.projectID | FA9550-14-1-0150 | |
dc.relation.projectID | ECS-0335765 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | implantación iónica | |
dc.subject.keyword | germanio hiperdopado | |
dc.subject.keyword | fundido láser con nanosegundos | |
dc.subject.keyword | recocido láser | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Física de materiales | |
dc.subject.ucm | Física del estado sólido | |
dc.subject.unesco | 22 Física | |
dc.subject.unesco | 2211 Física del Estado Sólido | |
dc.title | Gold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response | |
dc.title.alternative | Gold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response | |
dc.type | journal article | |
dc.volume.number | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0f0a0600-ce06-4d5b-acee-eb68dd4c9853 | |
relation.isAuthorOfPublication.latestForDiscovery | 0f0a0600-ce06-4d5b-acee-eb68dd4c9853 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- PhysRevApplied.14.064051.pdf
- Size:
- 863.97 KB
- Format:
- Adobe Portable Document Format