Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response

dc.contributor.authorGandhi, Hemi H.
dc.contributor.authorTran, Tuan T.
dc.contributor.authorKalchmair, S.
dc.contributor.authorPastor Pastor, David
dc.contributor.authorSmilie, L. A.
dc.contributor.authorMailoa, Jonathan P.
dc.contributor.authorMilazzo, Ruggero
dc.contributor.authorNapolitani, Enrico
dc.contributor.authorLoncar, Marco
dc.contributor.authorWilliams, James S.
dc.contributor.authorAziz, Michael J.
dc.contributor.authorMazur, Eric
dc.date.accessioned2023-06-17T08:21:57Z
dc.date.available2023-06-17T08:21:57Z
dc.date.issued2020-12-16
dc.description.abstractHyperdoping germanium with gold is a potential method to produce room-temperature short-wavelength-infrared radiation (SWIR; 1.4–3.0μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-band-gap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications.
dc.description.abstractHyperdoping germanium with gold is a potential method to produce room-temperature short-wavelength-infrared radiation (SWIR; 1.4–3.0μm) photodetection. We investigate the charge carrier dynamics, light absorption, and structural properties of gold-hyperdoped germanium (Ge:Au) fabricated with varying ion implantation and nanosecond pulsed laser melting conditions. Time-resolved terahertz spectroscopy (TRTS) measurements show that Ge:Au carrier lifetime is significantly higher than that in previously studied hyperdoped silicon systems. Furthermore, we find that lattice composition, sub-band-gap optical absorption, and carrier dynamics depend greatly on hyperdoping conditions. We use density functional theory (DFT) to model dopant distribution, electronic band structure, and optical absorption. These simulations help explain experimentally observed differences in optical and optoelectronic behavior across different samples. DFT modeling reveals that substitutional dopant incorporation has the lowest formation energy and leads to deep energy levels. In contrast, interstitial or dopant-vacancy complex incorporation yields shallower energy levels that do not contribute to sub-band-gap light absorption and have a small effect on charge carrier lifetimes. These results suggest that it is promising to tailor dopant incorporation sites of Ge:Au for SWIR photodetection applications.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDepartment of Defense (DoD)
dc.description.sponsorshipNational Defense Science and Engineering Graduate Fellowship (NDSEG) Program
dc.description.sponsorshipDirected Energy Processing Society Graduate Fellowship
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.sponsorshipGobierno regional de Madrid con los proyectos FEDER
dc.description.sponsorshipUS Air Force Office of Scientific Research
dc.description.sponsorshipNational Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70269
dc.identifier.issn2331-7019
dc.identifier.officialurlhttps://doi.org/10.1103/PhysRevApplied.15.064058
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6774
dc.issue.number064051
dc.journal.titlePhysical review applied
dc.language.isospa
dc.page.final11
dc.page.initial1
dc.publisherAmer Physical Soc
dc.relation.projectIDDGE 0946799
dc.relation.projectIDEX-2010-0662
dc.relation.projectIDRYC-2014-16936
dc.relation.projectIDTEC2017-84378-R
dc.relation.projectIDMADRID-PV2 P-2018/EMT-4308
dc.relation.projectIDFA9550-14-1-0150
dc.relation.projectIDECS-0335765
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordimplantación iónica
dc.subject.keywordgermanio hiperdopado
dc.subject.keywordfundido láser con nanosegundos
dc.subject.keywordrecocido láser
dc.subject.ucmFísica (Física)
dc.subject.ucmElectrónica (Física)
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco22 Física
dc.subject.unesco2211 Física del Estado Sólido
dc.titleGold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response
dc.title.alternativeGold-hyperdoped Germanium with Room-Temperature Sub-bandgap Optoelectronic Response
dc.typejournal article
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication0f0a0600-ce06-4d5b-acee-eb68dd4c9853
relation.isAuthorOfPublication.latestForDiscovery0f0a0600-ce06-4d5b-acee-eb68dd4c9853

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevApplied.14.064051.pdf
Size:
863.97 KB
Format:
Adobe Portable Document Format

Collections