Probabilistic evaluation for early wind turbine yaw misalignment detection

dc.contributor.authorGarcía-Vaca, Miguel Angel
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2025-11-19T14:03:45Z
dc.date.available2025-11-19T14:03:45Z
dc.date.issued2026-01-02
dc.description.abstractNowadays, one of the biggest challenges for wind turbines is to reduce operation and maintenance costs. Therefore, it is essential to develop predictive maintenance, anticipating failures early and thus avoiding unnecessary actions on the wind turbine. In this way, the uptime and performance of the turbine are maximized, and its useful life is extended. This work describes a general methodology for fault detection based on probabilistic models and its evaluation. This methodology combines a fault detection method based on the Fisher Test and the development of probabilistic models of wind turbine power curves. Several probabilistic models of power curves have been evaluated: Gaussian mixture model (GMM), Frank copula model, Gaussian mixture copula model (GMCM), Gaussian process regression (GPR) and epsilon-insensitive loss function support vector regression (ε-SVR). The results indicate that the Gaussian mixture copula model is the most efficient in terms of accuracy and computational cost. The detection of a wind turbine orientation misalignment error has been tested as a use case. It is shown how with this probabilistic approach it is possible to detect the fault in a short period of time from its appearance, 10–30 times faster than other techniques found in the literature with which it has been compared.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.sponsorshipMCI/AEI/FEDER project number PID2021–123543OB-C21.
dc.description.statuspub
dc.identifier.citationGarcía-Vaca, M. A., Sierra-García, J. E., & Santos, M. (2026). Probabilistic evaluation for early wind turbine yaw misalignment detection. Reliability Engineering & System Safety, 111716.
dc.identifier.doi10.1016/j.ress.2025.111716
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0951832025009160
dc.identifier.urihttps://hdl.handle.net/20.500.14352/126250
dc.issue.number111716
dc.journal.titleReliability Engineering & System Safety
dc.language.isoeng
dc.page.final13
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDMCI/AEI/FEDER project number PID2021–123543OB-C21.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordReliability
dc.subject.keywordPredictive maintenance
dc.subject.keywordAnomaly detection
dc.subject.keywordProbabilistic models
dc.subject.keywordPower curve
dc.subject.keywordWind turbine
dc.subject.keywordYaw misalignment
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleProbabilistic evaluation for early wind turbine yaw misalignment detection
dc.typejournal article
dc.volume.number266
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Probabilistic_evaluationfor_early_wind_turbine_yaw_misalignment_detection.pdf
Size:
4.86 MB
Format:
Adobe Portable Document Format

Collections