Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Formal groups and Z-entropies

dc.contributor.authorTempesta, Piergiulio
dc.date.accessioned2023-06-17T21:51:12Z
dc.date.available2023-06-17T21:51:12Z
dc.date.issued2016-11-01
dc.descriptionThis work has been partly supported by the research project FIS2015-63966, MINECO, Spain, and by the ICMAT Severo Ochoa project SEV-2015-0554 (MINECO). I wish to thank J. A. Carrasco, A. González López, M. A. Rodríguez and G. Sicuro for useful discussions.
dc.description.abstractWe shall prove that the celebrated Renyi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Renyi. A rucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180-197. (doi: 10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non- trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de EConomía y Competitividad (MINECO)
dc.description.sponsorshipICMAT Severo Ochoa project (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/41495
dc.identifier.doi10.1098/rspa.2016.0143
dc.identifier.issn1364-5021
dc.identifier.officialurlhttp://dx.doi.org/10.1098/rspa.2016.0143
dc.identifier.relatedurlhttp://rspa.royalsocietypublishing.org
dc.identifier.relatedurlhttps://arxiv.org/abs/1507.07436
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17652
dc.issue.number2195
dc.journal.titleProceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences
dc.language.isoeng
dc.publisherRoyal Society of London
dc.relation.projectIDFIS2015-63966
dc.relation.projectIDSEV-2015-0554
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGroup laws
dc.subject.keywordPolynomials
dc.subject.keywordBernoulli
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleFormal groups and Z-entropies
dc.typejournal article
dc.volume.number472
dspace.entity.typePublication
relation.isAuthorOfPublication46e9a666-a5cf-44c3-8726-7cbe2c61bd1a
relation.isAuthorOfPublication.latestForDiscovery46e9a666-a5cf-44c3-8726-7cbe2c61bd1a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tempesta27preprint.pdf
Size:
265.31 KB
Format:
Adobe Portable Document Format

Collections