Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine Learning Algorithms Combining Slope Deceleration and Fetal Heart Rate Features to Predict Acidemia

dc.contributor.authorEsteban, Luis Mariano
dc.contributor.authorCastán, Berta
dc.contributor.authorEsteban Escaño, Javier
dc.contributor.authorSanz Enguita, Gerardo
dc.contributor.authorLaliena, Antonio R.
dc.contributor.authorLou Mercadé, Ana Cristina
dc.contributor.authorChóliz Ezquerro, Marta
dc.contributor.authorCastán, Sergio
dc.contributor.authorSavirón Cornudella, Ricardo
dc.date.accessioned2024-11-19T08:47:57Z
dc.date.available2024-11-19T08:47:57Z
dc.date.issued2023-06-25
dc.description2023 Descuento MDPI
dc.description.abstractElectronic fetal monitoring (EFM) is widely used in intrapartum care as the standard method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees, random forest, and neural network models by combining EFM features to predict acidemia. Model validation included assessments of discrimination, calibration, and clinical utility. Our findings revealed that the random forest model achieved the highest area under the receiver characteristic curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By combining the extracted variables from EFM recordings, we provide a practical tool to assist in avoiding unnecessary cesarean sections.
dc.description.departmentOtras unidades y/o servicios
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipGobierno de Aragón
dc.description.statuspub
dc.identifier.citationEsteban, L.M.; Castán, B.; Esteban-Escaño, J.; Sanz-Enguita, G.; Laliena, A.R.; Lou-Mercadé, A.C.; Chóliz-Ezquerro, M.; Castán, S.; Savirón-Cornudella, R. Machine Learning Algorithms Combining Slope Deceleration and Fetal Heart Rate Features to Predict Acidemia. Appl. Sci. 2023, 13, 7478. https://doi.org/10.3390/app13137478
dc.identifier.doi10.3390/app13137478
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app13137478
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/13/13/7478
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110753
dc.issue.number7478
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116873GB-I00/ES/MODELOS ESTOCASTICOS PARA ESTIMACION Y PREDICCION EN MEDICINA Y EXTREMOS MEDIOAMBIENTALES/
dc.relation.projectIDT69_23D
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.152.112
dc.subject.keywordElectronic fetal monitoring
dc.subject.keywordFetal heart rate
dc.subject.keywordAcidemia
dc.subject.keywordMachine learning
dc.subject.keywordClinical utility curve
dc.subject.ucmMedicina
dc.subject.unesco32 Ciencias Médicas
dc.titleMachine Learning Algorithms Combining Slope Deceleration and Fetal Heart Rate Features to Predict Acidemia
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-13-07478.pdf
Size:
9.71 MB
Format:
Adobe Portable Document Format
Description:
2023: Descuento MDPI

Collections