Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Statistical models to predict type 2 diabetes remission after bariatric surgery

dc.contributor.authorRamos Levi, Ana
dc.contributor.authorMatía Martín, María Del Pilar
dc.contributor.authorCabrerizo García, Lucio
dc.contributor.authorBarabash Bustelo, Ana
dc.contributor.authorSánchez Pernaute, Andrés
dc.contributor.authorCalle Pascual, Alfonso Luis
dc.contributor.authorTorres García, Antonio José
dc.contributor.authorRubio Herrera, Miguel Ángel
dc.date.accessioned2025-01-27T07:53:53Z
dc.date.available2025-01-27T07:53:53Z
dc.date.issued2014
dc.description.abstractBackground: Type 2 diabetes (T2D) remission may be achieved after bariatric surgery (BS), but rates vary according to patients' baseline characteristics. The present study evaluates the relevance of several preoperative factors and develops statistical models to predict T2D remission 1 year after BS. Methods: We retrospectively studied 141 patients (57.4% women), with a preoperative diagnosis of T2D, who underwent BS in a single center (2006-2011). Anthropometric and glucose metabolism parameters before surgery and at 1-year follow-up were recorded. Remission of T2D was defined according to consensus criteria: HbA1c <6%, fasting glucose (FG) <100 mg/dL, absence of pharmacologic treatment. The influence of several preoperative factors was explored and different statistical models to predict T2D remission were elaborated using logistic regression analysis. Results: Three preoperative characteristics considered individually were identified as the most powerful predictors of T2D remission: C-peptide (R-2 = 0.249; odds ratio [OR] 1.652, 95% confidence interval [CI] 1.181-2.309; P = 0.003), T2D duration (R-2 = 0.197; OR 0.869, 95% CI 0.808-0.935; P < 0.001), and previous insulin therapy (R-2 = 0.165; OR 4.670, 95% CI 2.257-9.665; P < 0.001). High C-peptide levels, a shorter duration of T2D, and the absence of insulin therapy favored remission. Different multivariate logistic regression models were designed. When considering sex, T2D duration, and insulin treatment, remission was correctly predicted in 72.4% of cases. The model that included age, FG and C-peptide levels resulted in 83.7% correct classifications. When sex, FG, C-peptide, insulin treatment, and percentage weight loss were considered, correct classification of T2D remission was achieved in 95.9% of cases. Conclusion: Preoperative characteristics determine T2D remission rates after BS to different extents. The use of statistical models may help clinicians reliably predict T2D remission rates after BS.
dc.description.departmentDepto. de Cirugía
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationRamos-Levi AM, Matia P, Cabrerizo L, Barabash A, Sanchez-Pernaute A, Calle- Pascual AL, Torres AJ, Rubio MA. Statistical models to predict type 2 diabetes remission after bariatric surgery. J Diabetes. 2014 Sep;6(5):472-7. doi: 10.1111/1753-0407.12127. Epub 2014 Feb 26. PMID: 24433454.
dc.identifier.doi10.1111/1753-0407.12127
dc.identifier.essn1753-0407
dc.identifier.issn1753-0393
dc.identifier.officialurlhttps://doi.org/10.1111/1753-0407.12127
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/journal/17530407?gad_source=1&gbraid=0AAAAADoE1alnOa21DSsrdcimGesY2uaIL&gclid=Cj0KCQiA19e8BhCVARIsALpFMgHQkVbYbiZ8AE8OyQQ_YLp0E3PLuTzrdqc2ZDYPrX4da4kzd255gz4aAhmCEALw_wcB&utm_campaign=R3MR425&utm_content=Medicine&utm_medium=cpc&utm_source=google
dc.identifier.relatedurlhttps://pubmed.ncbi.nlm.nih.gov/24433454/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116130
dc.issue.number5
dc.journal.titleJournal of diabetes
dc.language.isoeng
dc.page.final477
dc.page.initial472
dc.publisherWiley
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu616.379-008.64
dc.subject.keywordcirugía bariátrica
dc.subject.keywordanálisis de regresión logística
dc.subject.keywordcirugía metabólica
dc.subject.keyworddiabetes mellitus tipo 2
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.titleStatistical models to predict type 2 diabetes remission after bariatric surgery
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number6
dspace.entity.typePublication
relation.isAuthorOfPublication7879ca03-671d-4844-b217-477e7f26e6d1
relation.isAuthorOfPublicationc9f31d49-27f1-4b35-8dae-34587a9be7f4
relation.isAuthorOfPublicationfb69167e-fa1d-4afa-8b0b-aa750a25845e
relation.isAuthorOfPublication64ea548c-394b-4f2a-aeaa-2341b7416dc1
relation.isAuthorOfPublication669efe68-8a95-4bc4-8fdd-32f26bbe31d2
relation.isAuthorOfPublication790390e8-2a0b-4dca-9996-3e85d11acad7
relation.isAuthorOfPublication54bfb565-4a99-41ce-a708-42a43080f9a3
relation.isAuthorOfPublication.latestForDiscovery7879ca03-671d-4844-b217-477e7f26e6d1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Statistical models to predict type 2 diabetes remission after bariatric surgery.pdf
Size:
140.39 KB
Format:
Adobe Portable Document Format

Collections