Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Christoffel transformation for a matrix of Bi-variate measures.

dc.contributor.authorGarcía Ardila, Juan
dc.contributor.authorMañas Baena, Manuel Enrique
dc.contributor.authorMarcellan, Francisco
dc.date.accessioned2023-06-16T15:15:40Z
dc.date.available2023-06-16T15:15:40Z
dc.date.issued2019-11
dc.description© 2019 Springer basel AG. The authors thank the referees by the careful revision of the manuscript. Their suggestions and remarks have contributed to improve its presentation. The work of Juan C. Garcia-Ardila and Francisco Marcellan has been supported by Direccion General de Investigacion Cientifica y Tecnica, Ministerio de Economia, Industria y Competitividad of Spain, Grant [MTM2015-65888-C4-2-P]. The work of Manuel Manas has been supported by Direccion General de Investigacion Cientifica y Tecnica, Ministerio de Economia, Industria y Competitividad of Spain, Grant [MTM2015-65888-C4-3-P].
dc.description.abstractWe consider the sequences of matrix bi-orthogonal polynomials with respect to the bilinear forms <center dot, center dot >((R) over cap) and <center dot, center dot >((L) over cap) < P(z(1)), Q(z(2))((R) over cap) = (TxT)integral P(z(1))dagger L(z(1))d mu(z(1), z(2)) Q(z(2)), P, Q is an element of L-pxp[z] < P(z(1)), Q(z(2))>(L) over cap = (TxT)integral P(z(1))L(z(1))d mu(z(1), z(2))Q(z(2)), where mu(z1, z2) is a matrix of bi-variate measures supported on T x T, with T the unit circle, L pxp[ z] is the set of matrix Laurent polynomials of size p x p and L(z) is a special polynomial in L pxp[ z]. A connection formula between the sequences of matrix Laurent bi-orthogonal polynomials with respect to <center dot, center dot >((R) over cap) and resp <center dot, center dot >((L) over cap) and the sequence of matrix Laurent bi-orthogonal polynomials with respect to d mu(z(1), z(2)) is given.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economia, Industria y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58662
dc.identifier.doi10.1007/s11785-019-00947-6
dc.identifier.issn1661-8254
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s11785-019-00947-6
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6015
dc.issue.number8
dc.journal.titleComplex analysis and operator theory
dc.language.isoeng
dc.page.final4005
dc.page.initial3979
dc.publisherSpringer basel AG
dc.relation.projectID(MTM2015-65888-C4-2-P ; MTM2015-65888-C4-3-P)
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordOrthogonal laurent polynomials
dc.subject.keywordUnit circle
dc.subject.keywordPerturbations
dc.subject.keywordExtensions.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleChristoffel transformation for a matrix of Bi-variate measures.
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas74preprint.pdf
Size:
187.22 KB
Format:
Adobe Portable Document Format

Collections