Publication:
The vapour-liquid transition of charge-stabilized colloidal suspensions: an effective one-component description

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-12-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The low-density phase diagrams of charge-stabilized colloidal suspensions of the Derjaguin-Landau-Verwey-Overbeek theory with an approximate effective one-component Hamiltonian given by the volume term and effective pair interactions, and of the classical theory (without including the volume term), are obtained from the hypernetted-chain integral equation at low colloidal charges. In the salt-free case both phase diagrams exhibit a vapour-liquid transition with short-ranged colloid-colloid correlations. This phase separation is compared to the vapour-liquid transition found in binary mixtures of highly asymmetrical hard spheres.
Description
© 2003 IOP Publishing Ltd. Workshop on Effective Many-Body Interactions and Correlations in Soft Matter (2003. Lyon, France). We are grateful to M Dijkstra and R van Roij for sending to us their simulation results. We wish to thank M Baus and E Lomba for many useful discussions. We acknowledge financial support from the Dirección General de Enseñanza Superior e Investigación Científica (DGESCYT) under grants No BFM2001-1017-C03-03 (GR and CFT) and No BQU2001-3615-C02-01 (JAA) and from the Instituto de Salud Carlos III grant No 01/1664 (JAA).
UCM subjects
Unesco subjects
Keywords
Citation
[1] See e.g. Poon W C K and Pusey P N 1995 Observation, Prediction and Simulation of Phase Transitions in Complex Fluids ed M Baus, L F Rull and J P Ryckaert (Dordrecht: Kluwer) [2] Likos C N 2001 Phys. Rep. 348 267 [3] van Roij R, Dijkstra M and Hansen J P 1999 Phys. Rev. E 59 2010, see also Denton A R 2000 Phys. Rev. E 62 3855 [4] Verwey J W and Overbeek J Th G 1948 Theory of the Stability of Lyotropic Colloids (Amsterdam: Elsevier) [5] Crocker J C and Grier D G 1994 Phys. Rev. Lett. 73 352; Kepler G M and Fraden S 1994 Phys. Rev. Lett. 73 356; Crocker J C and Grier D G 1996 Phys. Rev. Lett. 77 1897 [6] Tata B R V, Rajalakshmi M and Arora A K 1992 Phys. Rev. Lett. 69 3778; Larsen A E and Grier D G 1996 Phys. Rev. Lett. 76 3862; Larsen A E and Grier D G 1997 Nature 385 230 [7] Evans R 1979 Adv. Phys. 28 143 [8] Ascarelli P and Harrison R 1969 Phys. Rev. Lett. 22 285 [9] Robbins M O, Kremer K and Grest G G 1988 J. Chem. Phys. 88 3286; Thimuralai D 1989 J. Phys. Chem. 93 5637; Meijer E J and Frenkel D 1991 J. Chem. Phys. 94 2269; Dupont G, Moulinasse S, Ryckaert J P and Baus M 1993 Mol. Phys. 79 453 [10] Dijkstra M and van Roij R 1998 J. Phys.: Condens. Matter 10 1219 [11] Gray C G and Gubbins K E 1984 Theory of Molecular Fluids (Oxford: Clarendon) [12] Tejero C F 2003 J. Phys.: Condens. Matter 15 S395; Tejero C F and Baus M 2003 J. Chem. Phys. 118 892 [13] Belloni L 1986 Phys. Rev. Lett. 57 2026 [14] Anta J A and Lago S 2002 J. Chem. Phys. 116 10514, see also Anta J A, Bresme F and Lago S 2003 J. Phys.: Condens. Matter 15 S3491 [15] Belloni L 2000 J. Phys.: Condens. Matter 12 R549 [16] Louis A A 2002 J. Phys.: Condens. Matter 14 9187
Collections