The vapour-liquid transition of charge-stabilized colloidal suspensions: an effective one-component description
Loading...
Download
Official URL
Full text at PDC
Publication date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
Citation
Abstract
The low-density phase diagrams of charge-stabilized colloidal suspensions of the Derjaguin-Landau-Verwey-Overbeek theory with an approximate effective one-component Hamiltonian given by the volume term and effective pair interactions, and of the classical theory (without including the volume term), are obtained from the hypernetted-chain integral equation at low colloidal charges. In the salt-free case both phase diagrams exhibit a vapour-liquid transition with short-ranged colloid-colloid correlations. This phase separation is compared to the vapour-liquid transition found in binary mixtures of highly asymmetrical hard spheres.
Description
© 2003 IOP Publishing Ltd. Workshop on Effective Many-Body Interactions and Correlations in Soft Matter (2003. Lyon, France). We are grateful to M Dijkstra and R van Roij for sending to us their simulation results. We wish to thank M Baus and E Lomba for many useful discussions. We acknowledge financial support from the Dirección General de Enseñanza Superior e Investigación Científica
(DGESCYT) under grants No BFM2001-1017-C03-03 (GR and CFT) and No BQU2001-3615-C02-01 (JAA) and from the Instituto de Salud Carlos III grant No 01/1664 (JAA).