Attractors with irrational rotation number
dc.contributor.author | Hernández Corbato, Luis | |
dc.contributor.author | Ortega, Rafael | |
dc.contributor.author | Romero Ruiz del Portal, Francisco | |
dc.date.accessioned | 2023-06-20T00:24:48Z | |
dc.date.available | 2023-06-20T00:24:48Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Let h : R-2 -> R-2 be a dissipative and orientation preserving homeomorphism having an asymptotically stable fixed point. Let U be the region of attraction and assume that it is proper and unbounded. Using Caratheodory's prime ends theory one can associate a rotation number, rho, to h(vertical bar U). We prove that any map in the above conditions and with rho is not an element of Q induces a Denjoy homeomorphism in the circle of prime ends. We also present some explicit examples of maps in this class and we show that, if the infinity point is accessible by an arc in U, rho is not an element of Q if and only if Per(h) = Fix(h) = {p}. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | FPU Spanish Ministry of Education | |
dc.description.sponsorship | MEC | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/18097 | |
dc.identifier.doi | 10.1017/S0305004111000788 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.officialurl | http://journals.cambridge.org/abstract_S0305004111000788 | |
dc.identifier.relatedurl | http://www.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42533 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.language.iso | eng | |
dc.page.final | 77 | |
dc.page.initial | 59 | |
dc.publisher | Cambridge Univ Press | |
dc.relation.projectID | AP2008-00102 | |
dc.relation.projectID | MTM 2009-07030 | |
dc.relation.projectID | MTM 2008-02502 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Attractors with irrational rotation number | |
dc.type | journal article | |
dc.volume.number | 153 | |
dcterms.references | D. K. ARROWSMITH and C. M. PLACE. An Introduction to Dynamical Systems (Cambridge University Press, 1992). K. T. ALLIGOOD and J. A. YORKE. Accessible saddles on fractal basin boundaries. Ergod. Th.Dynam. Sys. 12 (1992),377–400. M. BARGE. Prime end rotation numbers associated with the Henon map., In Continuum Theory and Dynamical Systems Lecture Notes in Pure and Appl. Math. vol. 149 (Dekker,1993), pp. 15–33. G. D. BIRKHOFF. Sur quelques courbes fermees remarquables. Bull. Soc. Math. France 60 (1932),1–26. C.BONATTI and B. KOLEV. Surface homeomorphisms with zero-dimensional singular set. Topology Appl. 90 (1998), 69–95. M.BONINO. A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere. Fund.Math. 182 (2004), no. 1,1–40. M.L.CARTWRIGHT and J. E. LITTLEWOOD. Some fixed point theorems. Annals ofMath. 54 (1951),1–37. J. K. HALE. Asymptotic behavior of dissipative systems.Mathematical Surveys and Monographs, 25 (American Mathematical Society, 1988). B. KEREKJ ARTO . Sur le caracter topologique des representations conformes. C.R. Acad. Sci. 198 (1934), 317–320. N.LEVINSON. Transformation theory of non-linear differential equations of the second order. Ann. of Math. 45 (1944), 723–737. Addendum: Ann. of Math. 49 (1948), 738. N. G.MARKLEY. Homeomorphisms of the circle without periodic points. Proc. London Math. Soc.20 (1970), 688–698. J. N. MATHER. Topological proofs of some purely topological consequences of Carath´eodory’s theory of prime ends. Selected Studies. North Holland Publishing Company, Eds.Th.M. Rassias, G.M.Rassias (1982), 225–255. S. MATSUMOTO and H. NAKAYAMA. Continua as minimal sets of homeomorphisms of S2.arXiv:1005.0360v1 [math.DS]. R. ORTEGA and F. R. RUIZ DEL PORTAL. Attractors with anishing rotation number. J. Eur. Math.Soc. 13 (2011), 1567–1588. CH. POMMERENKE. Boundary behaviour of conformal maps.Lecture Notes in Math. (Springer–Verlag, 1991). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 87098c4b-1e25-4b37-b466-43febdc67ddf | |
relation.isAuthorOfPublication.latestForDiscovery | 87098c4b-1e25-4b37-b466-43febdc67ddf |