Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Attractors with irrational rotation number

dc.contributor.authorHernández Corbato, Luis
dc.contributor.authorOrtega, Rafael
dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T00:24:48Z
dc.date.available2023-06-20T00:24:48Z
dc.date.issued2012
dc.description.abstractLet h : R-2 -> R-2 be a dissipative and orientation preserving homeomorphism having an asymptotically stable fixed point. Let U be the region of attraction and assume that it is proper and unbounded. Using Caratheodory's prime ends theory one can associate a rotation number, rho, to h(vertical bar U). We prove that any map in the above conditions and with rho is not an element of Q induces a Denjoy homeomorphism in the circle of prime ends. We also present some explicit examples of maps in this class and we show that, if the infinity point is accessible by an arc in U, rho is not an element of Q if and only if Per(h) = Fix(h) = {p}.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipFPU Spanish Ministry of Education
dc.description.sponsorshipMEC
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18097
dc.identifier.doi10.1017/S0305004111000788
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0305004111000788
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42533
dc.issue.number1
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final77
dc.page.initial59
dc.publisherCambridge Univ Press
dc.relation.projectIDAP2008-00102
dc.relation.projectIDMTM 2009-07030
dc.relation.projectIDMTM 2008-02502
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAttractors with irrational rotation number
dc.typejournal article
dc.volume.number153
dcterms.referencesD. K. ARROWSMITH and C. M. PLACE. An Introduction to Dynamical Systems (Cambridge University Press, 1992). K. T. ALLIGOOD and J. A. YORKE. Accessible saddles on fractal basin boundaries. Ergod. Th.Dynam. Sys. 12 (1992),377–400. M. BARGE. Prime end rotation numbers associated with the Henon map., In Continuum Theory and Dynamical Systems Lecture Notes in Pure and Appl. Math. vol. 149 (Dekker,1993), pp. 15–33. G. D. BIRKHOFF. Sur quelques courbes fermees remarquables. Bull. Soc. Math. France 60 (1932),1–26. C.BONATTI and B. KOLEV. Surface homeomorphisms with zero-dimensional singular set. Topology Appl. 90 (1998), 69–95. M.BONINO. A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere. Fund.Math. 182 (2004), no. 1,1–40. M.L.CARTWRIGHT and J. E. LITTLEWOOD. Some fixed point theorems. Annals ofMath. 54 (1951),1–37. J. K. HALE. Asymptotic behavior of dissipative systems.Mathematical Surveys and Monographs, 25 (American Mathematical Society, 1988). B. KEREKJ ARTO . Sur le caracter topologique des representations conformes. C.R. Acad. Sci. 198 (1934), 317–320. N.LEVINSON. Transformation theory of non-linear differential equations of the second order. Ann. of Math. 45 (1944), 723–737. Addendum: Ann. of Math. 49 (1948), 738. N. G.MARKLEY. Homeomorphisms of the circle without periodic points. Proc. London Math. Soc.20 (1970), 688–698. J. N. MATHER. Topological proofs of some purely topological consequences of Carath´eodory’s theory of prime ends. Selected Studies. North Holland Publishing Company, Eds.Th.M. Rassias, G.M.Rassias (1982), 225–255. S. MATSUMOTO and H. NAKAYAMA. Continua as minimal sets of homeomorphisms of S2.arXiv:1005.0360v1 [math.DS]. R. ORTEGA and F. R. RUIZ DEL PORTAL. Attractors with anishing rotation number. J. Eur. Math.Soc. 13 (2011), 1567–1588. CH. POMMERENKE. Boundary behaviour of conformal maps.Lecture Notes in Math. (Springer–Verlag, 1991).
dspace.entity.typePublication
relation.isAuthorOfPublication87098c4b-1e25-4b37-b466-43febdc67ddf
relation.isAuthorOfPublication.latestForDiscovery87098c4b-1e25-4b37-b466-43febdc67ddf

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
RomeroRuiz01oficial.pdf
Size:
864.13 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
RomeroRuiz01libre.pdf
Size:
282.97 KB
Format:
Adobe Portable Document Format

Collections