Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An RFM Model Customizable to Product Catalogues and Marketing Criteria Using Fuzzy Linguistic Models: Case Study of a Retail Business

dc.contributor.authorMartínez, Rocío G.
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorSánchez-Figueroa, Cristina
dc.contributor.authorGavilán Bouzas, Diana
dc.date.accessioned2025-01-16T11:59:12Z
dc.date.available2025-01-16T11:59:12Z
dc.date.issued2021
dc.description.abstractIn the field of strategic marketing, the recency, frequency and monetary (RFM) variables model has been applied for years to determine how solid a database is in terms of spending and customer activity. Retailers almost never obtain data related to their customers beyond their purchase history, and if they do, the information is often out of date. This work presents a new method, based on the fuzzy linguistic 2-tuple model and the definition of product hierarchies, which provides a linguistic interpretability giving business meaning and improving the precision of conventional models. The fuzzy linguistic 2-tuple RFM model, adapted by the product hierarchy thanks to the analytical hierarchical process (AHP), is revealed to be a useful tool for including business criteria, product catalogues and customer insights in the definition of commercial strategies. The result of our method is a complete customer segmentation that enriches the clusters obtained with the traditional fuzzy linguistic 2-tuple RFM model and offers a clear view of customers’ preferences and possible actions to define cross- and up-selling strategies. A real case study based on a worldwide leader in home decoration was developed to guide, step by step, other researchers and marketers. The model was built using the only information that retailers always have: customers’ purchase ticket details.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationMartínez, R.G.; Carrasco, R.A.; Sanchez-Figueroa, C.; Gavilan, D. An RFM Model Customizable to Product Catalogues and Marketing Criteria Using Fuzzy Linguistic Models: Case Study of a Retail Business. Mathematics 2021, 9, 1836. https://doi.org/10.3390/math9161836
dc.identifier.doi10.3390/math9161836
dc.identifier.officialurlhttps://doi.org/10.3390/math9161836
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114663
dc.issue.number1836
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu81'322
dc.subject.cdu004.738.5:658.8
dc.subject.keywordRFM model
dc.subject.keyword2-tuple RFM model
dc.subject.keywordFuzzy linguistic modelling
dc.subject.keywordMulticriteria decision making
dc.subject.keywordAHP
dc.subject.keywordCustomer segmentation
dc.subject.keywordCustomer loyalty in retail
dc.subject.keywordProduct catalogue management
dc.subject.keywordPCA
dc.subject.keywordk-means
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmMarketing
dc.subject.ucmAdministración de empresas
dc.subject.ucmLingüística
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5311.05 Marketing (Comercialización)
dc.subject.unesco5701.04 Lingüística Informatizada
dc.titleAn RFM Model Customizable to Product Catalogues and Marketing Criteria Using Fuzzy Linguistic Models: Case Study of a Retail Business
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication83d3e524-44b7-4721-8ce8-6814324cd0b1
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-11-2021-MATH-oficial.pdf
Size:
4.61 MB
Format:
Adobe Portable Document Format

Collections