Partially coherent electromagnetic beams propagating through double-wedge depolarizers
dc.contributor.author | Piquero Sanz, Gemma María | |
dc.contributor.author | González de Sande, Juan Carlos | |
dc.contributor.author | Santarsiero, Massimo | |
dc.contributor.author | Gori, Franco | |
dc.date.accessioned | 2023-06-19T13:23:50Z | |
dc.date.available | 2023-06-19T13:23:50Z | |
dc.date.issued | 2014-03 | |
dc.description | © 2014 IOP Publishing Ltd | |
dc.description.abstract | The irradiance and polarization characteristics of quasi-monochromatic partially coherent electromagnetic beams are analyzed when they propagate after passing through a deterministic linear optical element, i.e., an optical element that can be represented by a Jones matrix. A class of such optical elements, which includes double-wedge depolarizers and polarization gratings, is defined and studied in detail. Analytical expressions are obtained for the case of double-wedge depolarizers and examples are given for an incident Gaussian Schell-model beam. For such an input beam, the effects on the irradiance and degree of polarization of the field propagating beyond the optical element are investigated in detail. A rich variety of behaviors is obtained by varying the beam size, coherence width and polarization state of the input field. The results not only provide a mathematical extension of well-known results to the domain of partial coherence, but they also exemplify mixing between coherence and polarization, which is, of course, not possible if, for example, fully spatially coherent fields are analyzed. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25274 | |
dc.identifier.doi | 10.1088/2040-8978/16/3/035708 | |
dc.identifier.issn | 2040-8978 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/2040-8978/16/3/035708 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33524 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of Optics | |
dc.language.iso | eng | |
dc.publisher | IOP Publishing, Ltd. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Schell-Model Beams | |
dc.subject.keyword | Lyot Depolarizer | |
dc.subject.keyword | Polarization | |
dc.subject.keyword | Light | |
dc.subject.keyword | Gratings | |
dc.subject.keyword | Crystals | |
dc.subject.keyword | Systems | |
dc.subject.keyword | Domains | |
dc.subject.keyword | Matrix | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Partially coherent electromagnetic beams propagating through double-wedge depolarizers | |
dc.type | journal article | |
dc.volume.number | 16 | |
dcterms.references | [1] McGuire J P and Chipman R A 1990 Analysis of spatial pseudodepolarizers in imaging systems Opt. Eng. 29 1478–84 [2] El Sherif M, Khalil M S, Khodeir S and Nagib N 1996 Simple depolarizers for spectrophotometric measurements of anisotropic samples Opt. Laser Technol. 28 561–3 [3] Biener G, Niv A, Kleiner V and Hasman E 2003 Computer-generated infrared depolarizer using space-variant subwavelength dielectric gratings Opt. Lett. 28 1400–2 [4] Honma M and Nose T 2004 Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains Appl. Opt. 43 4667–71 [5] Vartiainen I, Tervo J and Kuittinen M 2009 Depolarization of quasi-monochromatic light by thin resonant gratings Opt. Lett. 34 1648–50 [6] Bagan V A, Davydov B L and Samartsev I E 2009 Characteristics of Cornu depolarisers made from quartz and paratellurite optically active crystals Quantum Electron. 39 73–8 [7] Vena C, Versace C, Strangi G and Bartolino R 2009 Light depolarization by non-uniform polarization distribution over a beam cross section J. Opt. A: Pure Appl. Opt. 11 125704 [8] de Sande J C G, Piquero G and Teijeiro C 2012 Polarization changes at Lyot depolarizer output for different types of input beams J. Opt. Soc. Am. A 29 278–84 [9] de Sande J C G, Santarsiero M, Piquero G and Gori F 2012 Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer Opt. Express 20 27348–60 [10] Makowski P L, Szymanski M Z and Domanski A W 2012 Lyot depolarizer in terms of the theory of coherence—description for light of any spectrum Appl. Opt. 51 626–34 [11] Santarsiero M 2007 Polarization invariance in a Young interferometer J. Opt. Soc. Am. A 24 3493–9 [12] Gori F, Tervo J and Turunen J 2009 Correlation matrices of completely unpolarized beams Opt. Lett. 34 1447–9 [13] Hassinen T, Tervo J and Friberg A T 2013 Purity of partial polarization in the frequency and time domains Opt. Lett. 38 1221–3 [14] Piquero G, Borghi R and Santarsiero M 2001 Gaussian Schell-model beams propagating through polarization gratings J. Opt. Soc. Am. A 18 1399–405 [15] Piquero G, Borghi R, Mondello A and Santarsiero M 2001 Far field of beams generated by quasi-homogeneous sources passing through polarization gratings Opt. Commun. 195 339–50 [16] Santarsiero M, de Sande J C G, Piquero G and Gori F 2013 Coherence-polarization properties of fields radiated from transversely periodic electromagnetic sources J. Opt. 15 055701 [17] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) [18] Gori F, Santarsiero M, Piquero G, Borghi R, Mondello A and Simon R 2001 Partially polarized Gaussian Schell-model beams J. Opt. A: Pure Appl. Opt. 3 1–9 [19] Piquero G, Gori F, Romanini P, Santarsiero M, Borghi R and Mondello A 2002 Synthesis of partially polarized Gaussian Schell-model sources Opt. Commun. 208 9–16 [20] Shirai T, Korotkova O and Wolf E 2005 A method of generating electromagnetic Gaussian Schell-model beams J. Opt. A: Pure Appl. Opt. 7 232–7 [21] Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) [22] Martínez-Herrero R, Mejías P M and Piquero G 2009 Characterization of Partially Polarized Light Fields (Springer Series in Optical Sciences vol 147) (Berlin: Springer) [23] Gori F 1998 Matrix treatment for partially polarized, partially coherent beams Opt. Lett. 23 241–3 [24] Gori F, Santarsiero M, Vicalvi S, Borghi R and Guattari G 1998 Beam coherence polarization matrix J. Eur. Opt. Soc. A: Pure Appl. Opt. 7 941–51 [25] Gori F, Santarsiero M, Borghi R and Guattari G 1999 Irradiance of partially polarized beams in a scalar treatment Opt. Commun. 163 159–63 [26] Wolf E 2003 Unified theory of coherence and polarization of random electromagnetic beams Phys. Lett. A 312 263–7 [27] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) 7th expanded [28] Simon R 1990 Nondepolarizing systems and degree of polarization Opt. Commun. 77 349–54 [29] Alekseeva L V, Povkh I V, Stroganov V I, Kidyarov B I and Pasko P G 2002 Four-ray splitting in optical crystals J. Opt. Technol. 39 441–3 [30] Kuznetsov V, Faleiev D, Savin E and Lebedev V 2009 Crystal-based device for combining light beams Opt. Lett. 34 2856–7 [31] Arrizón V, Tepichin E, Ortiz-Gutiérrez M and Lohmann A W 1996 Fresnel diffraction at 1/4 of the Talbot distance of an anisotropic grating Opt. Commun. 127 171–5 [32] Fujiwara H 2007 Spectroscopic Ellipsometry: Principles and Applications. Appendix A (Chichester: Wiley) 353–5 [33] Simon B N, Simon S, Gori F, Santarsiero M, Borghi R, Mukunda N and Simon R 2010 Nonquantum entanglement resolves a basic issue in polarization optics Phys. Rev. Lett. 104 023901 [34] Chipman R A 2005 Depolarization index and the average degree of polarization Appl. Opt. 44 2490–5 [35] Gori F 1983 Mode propagation of the field generated by Collett–Wolf Schell-model sources Opt. Commun. 46 149–54 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3a400653-91df-40bb-8891-03df312fea56 | |
relation.isAuthorOfPublication.latestForDiscovery | 3a400653-91df-40bb-8891-03df312fea56 |
Download
Original bundle
1 - 1 of 1