Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

General statistical framework for quantitative proteomics by stable isotope labeling.

dc.contributor.authorNavarro, Pedro
dc.contributor.authorTrevisan Herraz, Marco
dc.contributor.authorBonzon Kulichenko, Elena
dc.contributor.authorNúñez, Estefanía
dc.contributor.authorMartínez Acedo, Pablo
dc.contributor.authorPérez Hernández, Daniel
dc.contributor.authorJorge, Inmaculada
dc.contributor.authorMesa, Raquel
dc.contributor.authorCalvo, Enrique
dc.contributor.authorCarrascal, Montserrat
dc.contributor.authorHernáez, María Luisa
dc.contributor.authorGarcía, Fernando
dc.contributor.authorBárcena, José Antonio
dc.contributor.authorAshman, Keith
dc.contributor.authorAbian, Joaquín
dc.contributor.authorGil, Concha
dc.contributor.authorRedondo, Juan Miguel
dc.contributor.authorVázquez, Jesús
dc.date.accessioned2023-06-19T14:56:58Z
dc.date.available2023-06-19T14:56:58Z
dc.date.issued2014-01-31
dc.description.abstractThe combination of stable isotope labeling (SIL) with mass spectrometry (MS) allows comparison of the abundance of thousands of proteins in complex mixtures. However, interpretation of the large data sets generated by these techniques remains a challenge because appropriate statistical standards are lacking. Here, we present a generally applicable model that accurately explains the behavior of data obtained using current SIL approaches, including (18)O, iTRAQ, and SILAC labeling, and different MS instruments. The model decomposes the total technical variance into the spectral, peptide, and protein variance components, and its general validity was demonstrated by confronting 48 experimental distributions against 18 different null hypotheses. In addition to its general applicability, the performance of the algorithm was at least similar than that of other existing methods. The model also provides a general framework to integrate quantitative and error information fully, allowing a comparative analysis of the results obtained from different SIL experiments. The model was applied to the global analysis of protein alterations induced by low H₂O₂ concentrations in yeast, demonstrating the increased statistical power that may be achieved by rigorous data integration. Our results highlight the importance of establishing an adequate and validated statistical framework for the analysis of high-throughput data.
dc.description.departmentDepto. de Microbiología y Parasitología
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Education
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipRed Temática de Investigación Cooperativa en Enfermedades Cardiovasculares
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33630
dc.identifier.doi10.1021/pr4006958
dc.identifier.issn1535-3907
dc.identifier.officialurlhttp://dx.doi.org/10.1021/pr4006958
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34918
dc.issue.number3
dc.journal.titleJournal of proteome research
dc.language.isoeng
dc.page.final47
dc.page.initial1234
dc.publisherAmerican Chemical Society
dc.relation.projectIDBIO2009-07990
dc.relation.projectIDBIO2009- 11735
dc.relation.projectIDBFU2009-08004
dc.relation.projectIDSAF 2009-07520
dc.relation.projectIDBIO2012- 37926
dc.relation.projectIDCAM BIO/0194/2006
dc.relation.projectIDRD06/0014/0030
dc.relation.projectIDRD12/0042/0021
dc.relation.projectIDRD06/0014/0005
dc.relation.projectIDRD12/0042/0022
dc.rights.accessRightsrestricted access
dc.subject.cdu579
dc.subject.keywordQuantitative proteomics
dc.subject.keywordstable isotope labeling
dc.subject.keywordstatistical analysis
dc.subject.keywordyeast
dc.subject.ucmMicrobiología (Farmacia)
dc.subject.unesco3302.03 Microbiología Industrial
dc.titleGeneral statistical framework for quantitative proteomics by stable isotope labeling.
dc.typejournal article
dc.volume.number13
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Navarro et al. - 2014 - General Statistical Framework for Quantitative Pro.pdf
Size:
952.15 KB
Format:
Adobe Portable Document Format

Collections