Community detection problem based on polarization measures: an application to Twitter: the COVID-19 case in Spain
dc.contributor.author | Gutiérrez García-Pardo, Inmaculada | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Castro Cantalejo, Javier | |
dc.contributor.author | Guevara Gil, Juan Antonio | |
dc.contributor.author | Espínola Vílchez, María Rosario | |
dc.contributor.editor | Nescolarde Selva, Josue Antonio | |
dc.date.accessioned | 2024-02-07T16:21:17Z | |
dc.date.available | 2024-02-07T16:21:17Z | |
dc.date.issued | 2021-02-23 | |
dc.description.abstract | In this paper, we address one of the most important topics in the field of Social Networks Analysis: the community detection problem with additional information. That additional information is modeled by a fuzzy measure that represents the risk of polarization. Particularly, we are interested in dealing with the problem of taking into account the polarization of nodes in the community detection problem. Adding this type of information to the community detection problem makes it more realistic, as a community is more likely to be defined if the corresponding elements are willing to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network obtained from Twitter, concerning the political position against the Spanish government taken by several influential users. We analyze how the partitions obtained change when some additional information related to how polarized that society is, is added to the problem. | en |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Gutiérrez, I.; Guevara, J.A.; Gómez, D.; Castro, J.; Espínola, R. Community Detection Problem Based on Polarization Measures: An Application to Twitter: The COVID-19 Case in Spain. Mathematics 2021, 9, 443, doi:10.3390/math9040443. | |
dc.identifier.doi | 10.3390/math9040443 | |
dc.identifier.essn | 2227-7390 | |
dc.identifier.officialurl | https//doi.org/10.3390/math9040443 | |
dc.identifier.relatedurl | https://www.mdpi.com/2227-7390/9/4/443 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/100076 | |
dc.issue.number | 443 | |
dc.journal.title | Mathematics | |
dc.language.iso | eng | |
dc.page.final | 27 | |
dc.page.initial | 1 | |
dc.publisher | MDPI | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-70550-P/ES/ANALISIS JUEGO-TEORICO DE LAS REDES SOCIALES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096509-B-I00/ES/GESTION INTELIGENTE DE INFORMACION BORROSA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-66471-P/ES/TECNICAS DE OBTENCION, PROCESAMIENTO Y REPRESENTACION DE INFORMACION DIFUSA PARA LA TOMA DE DECISIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106254RB-I00/ES/LA ESTRUCTURA DE LA COMUNICACION EN RED Y LA OPINION PUBLICA INCLUSIVA. UN ESTUDIO CON TECNICAS DE BIG DATA Y ANALISIS DE REDES SOCIALES/ | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 004.6 | |
dc.subject.cdu | 519.22-7 | |
dc.subject.keyword | Networks | |
dc.subject.keyword | Community detection | |
dc.subject.keyword | Extended fuzzy graphs | |
dc.subject.keyword | Polarization | |
dc.subject.keyword | Fuzzy sets | |
dc.subject.keyword | Ordinal variation | |
dc.subject.ucm | Redes | |
dc.subject.ucm | Estadística aplicada | |
dc.subject.unesco | 1209.03 Análisis de Datos | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Community detection problem based on polarization measures: an application to Twitter: the COVID-19 case in Spain | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 9(4) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2f4cd183-2dd2-4b4e-8561-9086ff5c0b90 | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | e556dae6-6552-4157-b98a-904f3f7c9101 | |
relation.isAuthorOfPublication | 9cd0db39-d6a0-44e3-88c2-86616d202293 | |
relation.isAuthorOfPublication | 843bc5ed-b523-401d-98ed-6cb00a801c31 | |
relation.isAuthorOfPublication.latestForDiscovery | 2f4cd183-2dd2-4b4e-8561-9086ff5c0b90 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Community Detection Problem Based on Polarization Measures.pdf
- Size:
- 1.74 MB
- Format:
- Adobe Portable Document Format