An Architecture and Functional Description to Integrate
Social Behaviour Knowledge Into Group Recommender Systems
dc.contributor.author | Quijano Sánchez, Lara | |
dc.contributor.author | Recio García, Juan Antonio | |
dc.contributor.author | Díaz Agudo, María Belén | |
dc.date.accessioned | 2023-06-19T14:55:04Z | |
dc.date.available | 2023-06-19T14:55:04Z | |
dc.date.issued | 2014-06 | |
dc.description.abstract | In this paper we consider the research challenges of generating a set of recommendations that will satisfy a group of users, with potentially competing interests. We review diferent ways of combining the preferences of diferent users and propose an approach that takes into account the social behaviour within a group. Our method, named delegation-based prediction method, includes an analysis of the group characteristics, such as size, structure, personality of its members in conict situations, and trust between group members. A key element in this paper is the use of social information available in the Web to make enhanced recommendations to groups. We propose a generic architecture named arise (Architecture for Recommendations Including Social Elements) and describe, as a case study, our Facebook application HappyMovie: a group recommender system that is designed to provide assistance to a group of friends that might be selecting which movie to watch on a cinema outing. We evaluate the performance (compared with the real group decision) of diferent recommenders that use increasing levels of social behaviour knowledge. | |
dc.description.department | Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA) | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación, Cultura y Deporte | |
dc.description.sponsorship | Madrid Educational Council | |
dc.description.sponsorship | Ministerio de Economía y Competitividad | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31221 | |
dc.identifier.doi | 10.1007/s10489-013-0504-y | |
dc.identifier.issn | 1573-7497 | |
dc.identifier.officialurl | htpp://dx.doi.org/10.1007/s10489-013-0504-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34761 | |
dc.issue.number | 4 | |
dc.journal.title | Applied Intelligence | |
dc.language.iso | spa | |
dc.page.final | 748 | |
dc.page.initial | 732 | |
dc.publisher | Springer Verlag | |
dc.relation.projectID | TIN2009-13692-C03-03 | |
dc.relation.projectID | Group 910494 | |
dc.relation.projectID | IPT-2011-1890-430000 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 004.738.52:338.46 | |
dc.subject.keyword | Group Recommender systems | |
dc.subject.keyword | Social Networks | |
dc.subject.keyword | Personality | |
dc.subject.keyword | Trust | |
dc.subject.keyword | Generic Architecture | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.unesco | 1203.17 Informática | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.title | An Architecture and Functional Description to Integrate Social Behaviour Knowledge Into Group Recommender Systems | |
dc.type | journal article | |
dc.volume.number | 40 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6e94b3e8-1cba-4505-9d17-a0c09a524300 | |
relation.isAuthorOfPublication | 95de81bf-4637-4307-8ff6-f2c06c591d18 | |
relation.isAuthorOfPublication.latestForDiscovery | 6e94b3e8-1cba-4505-9d17-a0c09a524300 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- QuijanoAppInt_RevisedVersion.pdf
- Size:
- 1.41 MB
- Format:
- Adobe Portable Document Format