Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An Architecture and Functional Description to Integrate Social Behaviour Knowledge Into Group Recommender Systems

dc.contributor.authorQuijano Sánchez, Lara
dc.contributor.authorRecio García, Juan Antonio
dc.contributor.authorDíaz Agudo, María Belén
dc.date.accessioned2023-06-19T14:55:04Z
dc.date.available2023-06-19T14:55:04Z
dc.date.issued2014-06
dc.description.abstractIn this paper we consider the research challenges of generating a set of recommendations that will satisfy a group of users, with potentially competing interests. We review diferent ways of combining the preferences of diferent users and propose an approach that takes into account the social behaviour within a group. Our method, named delegation-based prediction method, includes an analysis of the group characteristics, such as size, structure, personality of its members in conict situations, and trust between group members. A key element in this paper is the use of social information available in the Web to make enhanced recommendations to groups. We propose a generic architecture named arise (Architecture for Recommendations Including Social Elements) and describe, as a case study, our Facebook application HappyMovie: a group recommender system that is designed to provide assistance to a group of friends that might be selecting which movie to watch on a cinema outing. We evaluate the performance (compared with the real group decision) of diferent recommenders that use increasing levels of social behaviour knowledge.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte
dc.description.sponsorshipMadrid Educational Council
dc.description.sponsorshipMinisterio de Economía y Competitividad
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31221
dc.identifier.doi10.1007/s10489-013-0504-y
dc.identifier.issn1573-7497
dc.identifier.officialurlhtpp://dx.doi.org/10.1007/s10489-013-0504-y
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34761
dc.issue.number4
dc.journal.titleApplied Intelligence
dc.language.isospa
dc.page.final748
dc.page.initial732
dc.publisherSpringer Verlag
dc.relation.projectIDTIN2009-13692-C03-03
dc.relation.projectIDGroup 910494
dc.relation.projectIDIPT-2011-1890-430000
dc.rights.accessRightsopen access
dc.subject.cdu004.738.52:338.46
dc.subject.keywordGroup Recommender systems
dc.subject.keywordSocial Networks
dc.subject.keywordPersonality
dc.subject.keywordTrust
dc.subject.keywordGeneric Architecture
dc.subject.ucmInformática (Informática)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleAn Architecture and Functional Description to Integrate Social Behaviour Knowledge Into Group Recommender Systems
dc.typejournal article
dc.volume.number40
dspace.entity.typePublication
relation.isAuthorOfPublication6e94b3e8-1cba-4505-9d17-a0c09a524300
relation.isAuthorOfPublication95de81bf-4637-4307-8ff6-f2c06c591d18
relation.isAuthorOfPublication.latestForDiscovery6e94b3e8-1cba-4505-9d17-a0c09a524300

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuijanoAppInt_RevisedVersion.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

Collections