Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bayesian approach to inverse scattering with topological priors

dc.contributor.authorCarpio Rodríguez, Ana María
dc.contributor.authorIakunin, Sergei
dc.contributor.authorStadler, Georg
dc.date.accessioned2023-06-17T08:28:41Z
dc.date.available2023-06-17T08:28:41Z
dc.date.issued2020-09-24
dc.description.abstractWe propose a Bayesian inference framework to estimate uncertainties in inverse scattering problems. Given the observed data, the forward model and their uncertainties, we find the posterior distribution over a finite parameter iield representing the objects. To construct the prior distribution we use a topological sensitivity analysis. We demonstrate the approach on the Bayesian solution of 2D inverse problems in light and acoustic holography with synthetic data. Statistical information on objects such as their center location, diameter size, orientation, as well as material properties, are extracted by sampling the posterior distribution. Assuming the number of objects known, comparison of the results obtained by Markov Chain Monte Carlo sampling and by sampling a Gaussian distribution found by linearization about the maximum a posteriori estimate show reasonable agreement. The latter procedure has low computational cost, which makes it an interesting tool for uncertainty studies in 3D. However, MCMC sampling provides a more complete picture of the posterior distribution and yields multi-modal posterior distributions for problems with larger measurement noise. When the number of objects is unknown, we devise a stochastic model selection framework.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73975
dc.identifier.citationCarpio Rodríguez, A. M. «Bayesian approach to inverse scattering with topological priors». Inverse Problems, vol. 36, n.o 10, octubre de 2020, p. 105001. DOI.org (Crossref), https://doi.org/10.1088/1361-6420/abaa30.
dc.identifier.doi10.1088/1361-6420/ABAA30
dc.identifier.issn0266-5611
dc.identifier.officialurlhttps//doi.org/10.1088/1361-6420/ABAA30
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7238
dc.issue.number10
dc.journal.titleInverse problems
dc.language.isoeng
dc.publisherIOP Publishing
dc.rights.accessRightsopen access
dc.subject.cdu519.6
dc.subject.keywordInverse scattering
dc.subject.keywordBayesian inference
dc.subject.keywordTopological prior
dc.subject.keywordPDE-constrained
dc.subject.keywordOptimization
dc.subject.keywordMCMC sampling
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleBayesian approach to inverse scattering with topological priorsen
dc.typejournal article
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublicationf301b87d-970b-4da8-9373-fef22632392a
relation.isAuthorOfPublication.latestForDiscoveryf301b87d-970b-4da8-9373-fef22632392a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
carpio_bayesian_inverseproblems.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format

Collections