Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Order monotonic solutions for generalized characteristic functions

dc.contributor.authorVan den Brink, René
dc.contributor.authorGonzález Arangüena, Enrique
dc.contributor.authorManuel García, Conrado Miguel
dc.contributor.authorPozo Juan, Mónica
dc.contributor.editorSłowiński, R.
dc.contributor.editorBorgonovo E.
dc.date.accessioned2024-03-12T13:13:22Z
dc.date.available2024-03-12T13:13:22Z
dc.date.issued2014-11-01
dc.description.abstractGeneralized characteristic functions extend characteristic functions of 'classical' TU-games by assigning a real number to every ordered coalition being a permutation of any subset of the player set. Such generalized characteristic functions can be applied when the earnings or costs of cooperation among a set of players depend on the order in which the players enter a coalition. In the literature, the two main solutions for generalized characteristic functions are the one of Nowak and Radzik (1994), shortly called NR-value, and the one introduced by Sanchez and Bergantinos (1997), shortly called SB-value. In this paper, we introduce the axiom of order monotonicity with respect to the order of the players in a unanimity coalition, requiring that players who enter earlier should get not more in the corresponding (ordered) unanimity game than players who enter later. We propose several classes of order monotonic solutions for generalized characteristic functions that contain the NR-value and SB-value as special (extreme) cases. We also provide axiomatizations of these classes.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationVan den Brink, R., González-Arangüena, E., Manuel, C., & del Pozo, M. (2014). Order monotonic solutions for generalized characteristic functions. European Journal of Operational Research, 238(3), 786–786.
dc.identifier.doi10.1016/j.ejor.2014.04.016
dc.identifier.essn1872-6860
dc.identifier.issn0377-2217
dc.identifier.officialurlhttps://doi.org/10.1016/j.ejor.2014.04.016
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0377221714003257?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/102148
dc.issue.number3
dc.journal.titleEuropean Journal of Operational Research
dc.language.isoeng
dc.page.final796
dc.page.initial786
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu519.2
dc.subject.cdu517.5
dc.subject.cdu519.813
dc.subject.keywordGame theory
dc.subject.keywordCooperative TU-game
dc.subject.keywordGeneralized characteristic function
dc.subject.keywordOrder monotonicity
dc.subject.ucmEstadística
dc.subject.ucmFunciones (Matemáticas)
dc.subject.ucmTeoría de Juegos
dc.subject.unesco1209 Estadística
dc.subject.unesco1206 Análisis Numérico
dc.subject.unesco1207.06 Teoría de Juegos
dc.titleOrder monotonic solutions for generalized characteristic functions
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number238
dspace.entity.typePublication
relation.isAuthorOfPublicationbc2d131e-fe0d-4a54-bb14-a185c30c1e0a
relation.isAuthorOfPublicatione6f9af3a-a3e1-497e-bf88-6c8535dcea8d
relation.isAuthorOfPublication34984c5c-7b06-4cbe-8c2c-eab1b24576a1
relation.isAuthorOfPublication.latestForDiscoverybc2d131e-fe0d-4a54-bb14-a185c30c1e0a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Order monotonic solutions for....pdf
Size:
406.92 KB
Format:
Adobe Portable Document Format

Collections