Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Existencia global de soluciones y estabilidad en sistemas de dos especies depredador-presa con difusión y quimiotaxis

dc.contributor.advisorNegreanu, Mihaela
dc.contributor.authorNavarro Fernández, Víctor
dc.date.accessioned2023-06-17T15:03:23Z
dc.date.available2023-06-17T15:03:23Z
dc.date.issued2019-07
dc.degree.titleMatemáticas
dc.description.abstractEn este trabajo se estudia un sistema no lineal de reacción-difusión de ecuaciones en derivadas parciales que describe la evolución de un sistema biológico depredador-presa con quimiotaxis. El sistema está compuesto por tres ecuaciones, dos de ellas parabólicas correspondientes a los depredadores activos y a las presas, y una ordinaria correspondiente a depredadores inactivos. La quimiotaxis en este contexto afecta a los depredadores activos de modo que dirigen su movimiento hacia las zonas en las que la densidad de depredadores inactivos es mayor. Para llevar a cabo este estudio primero se realiza una revisión bibliográfica sobre algunos sistemas depredador-presa con quimiotaxis y con término de depredadores inactivos. Posteriormente se utilizan métodos clásicos para ecuaciones parabólicas-parabólicas-ordinarias para demostrar la existencia local de soluciones en nuestro sistema, y el método iterativo de Moser-Alikakos para construir acotaciones uniformes. Finalmente se realiza una breve aproximación numérica para obtener una mejor comprensión del comportamiento del sistema biológico.
dc.description.abstractIn the present work a nonlinear system of reaction-diffusion partial differential equations describing the evolution of a prey-predator biological system with chemotaxis is studied. The system consists of three equations, two parabolic equations corresponding to the active predators and preys, and an ordinary equation corresponding to a special term related to the dormant predators. Chemotaxis in this context affects to the active predators such that they will move towards the regions in which the density of resting eggs (dormant predators) is larger. To properly accomplish this study first a literature review on some prey-predator chemotaxis systems and with dormant predators term is conducted. Then we use classical methods for parabolic-parabolic-ordinary equations to prove the local existence of solutions and the Moser-Alikakos iterative method to find bounds in L ∞, hence we obtain global existence of solutions in our system. Finally a brief numerical approximation is achieved in order to get a better understanding of the behavior of our system.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60888
dc.identifier.urihttps://hdl.handle.net/20.500.14352/15289
dc.language.isospa
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.cdu517.9
dc.subject.keywordSistemas biológicos
dc.subject.keywordModelos matemáticos
dc.subject.keywordEcuaciones en derivadas parciales
dc.subject.keywordQuimiotaxis
dc.subject.ucmAnálisis matemático
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExistencia global de soluciones y estabilidad en sistemas de dos especies depredador-presa con difusión y quimiotaxis
dc.typebachelor thesis
dcterms.references[1] Alikakos, N.D. Lp bounds of solutions of reaction-diffusion equations. Comm. in Partial Differential Equations, 4(8), 827-868 (1979) [2] Amann, H. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differential and Integral Equations, Volume 3, Number 1, January 1990, pp.13-75. [3] Amann, H. Nonhomogeneous linear and quasilinear elliptic abd parabollic boundary value problems. Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte zur Mathematik, Springer Fachmedien Wiesbaden, 1993, pp.9-126. [4] Bazykin, A.D. Nonlinear dynamics of interacting populations. World Scientific Series on Nonlinear Science, Series A, Vol. 11, Berkeley, 1998. [5] Braun, M. Differential equations and their applications. Springer Texts in Applied Mathematics, 4ºEd, New York, 1975. [6] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Springer Universitext, New York, 2002. [7] Gyllstrom, M. Hansson, L.A. ¨ Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. (2004) 66: 274. [8] Kuwamura, M. Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. (2015) 71:125-149. DOI: 10.1007/s00285-014-0816-5 [9] Liu, P. Shi, J. Wang, Z. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical System Series B, Vol. 18, N. 10 (2013) 2597-2625. [10] Murray, J.D. Mathematical biology. Springer Interdisciplinary Applied Mathematics, 3oEd, New York, 2002. [11] Nakazawa, T. Kuwamura, M. Yamamura, N. Implications of resting eggs of zooplankton for the paradox of enrichment. Popul. Ecol. (2011) 53:341-350. [12] Negreanu, M. Tello, J.I. Asymptotic stability of a two species chemotaxis system with nondiffusive chemoattractant. J. Differential Equations 258 (2015) 1592-1617. [13] Protter, M.H. Weinberger, H.F. Maximum principles in differential equations. Springer-Verlag, New York, 1984. [14] Wu, S. Shi, J. Wu, B. Global existence of solutions and uniform persistence of a diffusive predatorprey model with prey-taxis. J. Differential Equations 260 (2016) 5847-5874. [15] Wu, S. Wang, J. Shi, J. Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis. Math. Models Methods Appl. Sci. Vol. 28, No. 11 (2018) 2275-2312.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
predator_prey.pdf
Size:
11.24 MB
Format:
Adobe Portable Document Format