Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Dynamic Conditional Correlations for Asymmetric Processes

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng and Straits Times Indices for estimating and forecasting the wDCC-EGARCH and wDCC-GJR models, and compares the performance with the asymmetric BEKK model. The empirical results show that AIC and BIC favour the wDCC-EGARCH model to the wDCC-GJR, asymmetric BEKK and alternative conventional DCC models. Moreover, the empirical results indicate that the wDCC-EGARCH-t model produces reasonable VaR threshold forecasts, which are very close to the nominal 1% to 3% values.

Research Projects

Organizational Units

Journal Issue

Description

The authors wish to thank the editor and two referees for insightful comments and suggestions and Yoshi Baba for helpful discussions. For financial support, the first author acknowledges the Japan Society for the Promotion of Science and the Australian Academy of Science, and the second author wishes to acknowledge the Australian Research Council, National Science Council, Taiwan, and the Japan Society for the Promotion of Science.

Unesco subjects

Keywords