Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Bivariate delta-evolution equations and convolution polynomials: Computing polynomial expansions of solutions

dc.contributor.authorAlonso Morón, Manuel
dc.contributor.authorLuzón, Ana
dc.date.accessioned2023-06-20T00:10:12Z
dc.date.available2023-06-20T00:10:12Z
dc.date.issued2011-10-15
dc.description.abstractThis paper describes an application of Rota and collaborator's ideas, about the foundation on combinatorial theory, to the computing of solutions of some linear functional partial differential equations. We give a dynamical interpretation of the convolution families of polynomials. Concretely, we interpret them as entries in the matrix representation of the exponentials of certain contractive linear operators in the ring of formal power series. This is the starting point to get symbolic solutions for some functional-partial differential equations. We introduce the bivariate convolution product of convolution families to obtain symbolic solutions for natural extensions of functional-evolution equations related to delta-operators. We put some examples to show how these symbolic methods allow us to get closed formulas for solutions of genuine partial differential equations. We create an adequate framework to base theoretically some of the performed constructions and to get some existence and uniqueness results.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDirectorate General for Higher Education (Portugal)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14894
dc.identifier.citationLuzón, A., y Alonso Morón, M. «Bivariate Delta-Evolution Equations and Convolution Polynomials: Computing Polynomial Expansions of Solutions». Applied Mathematics and Computation, vol. 218, n.o 4, octubre de 2011, pp. 1417-35. DOI.org (Crossref), https://doi.org/10.1016/j.amc.2011.06.024.
dc.identifier.doi10.1016/j.amc.2011.06.024
dc.identifier.issn0096-3003
dc.identifier.officialurlhttps//doi.org/10.1016/j.amc.2011.06.024
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0096300311008514
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42119
dc.issue.number4
dc.journal.titleApplied Mathematics and Computation
dc.language.isoeng
dc.page.final1435
dc.page.initial1417
dc.publisherElsevier
dc.relation.projectIDMICINN-FIS2008-04921-C02-02
dc.relation.projectIDMTM-2009-07030
dc.rights.accessRightsrestricted access
dc.subject.cdu512.643
dc.subject.keywordRiordan arrays
dc.subject.keywordMatrices
dc.subject.keywordUltrametric
dc.subject.keywordConvolution family
dc.subject.keywordDelta-operator
dc.subject.keywordRiordan group
dc.subject.keywordDelta-evolution equation
dc.subject.keywordBivariate convolution
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleBivariate delta-evolution equations and convolution polynomials: Computing polynomial expansions of solutionsen
dc.typejournal article
dc.volume.number218
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication.latestForDiscovery95bd8189-3086-4e0f-94f6-06dee8c8f675

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
314.22 KB
Format:
Adobe Portable Document Format

Collections