A note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs

dc.contributor.authorMartínez Pérez, Álvaro
dc.contributor.authorRodríguez, José M.
dc.date.accessioned2025-12-16T09:53:27Z
dc.date.available2025-12-16T09:53:27Z
dc.date.issued2021
dc.description.abstractWe study in this paper the relationship of isoperimetric inequality and hyperbolicity for graphs and Riemannian manifolds. We obtain a characterization of graphs and Riemannian manifolds (with bounded local geometry) satisfying the (Cheeger) isoperimetric inequality, in terms of their Gromov boundary, improving similar results from a previous work. In particular, we prove that having a pole is a necessary condition to have isoperimetric inequality and, therefore, it can be removed as hypothesis.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationMartínez-Pérez, Á., Rodríguez, J.M. A note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs. RACSAM. 2021; 115:154
dc.identifier.doi10.1007/s13398-021-01096-2
dc.identifier.issn1578-7303
dc.identifier.issn1579-1505
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129084
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM)
dc.language.isoeng
dc.publisherSpringer Nature Link
dc.rights.accessRightsopen access
dc.subject.keywordBounded local geometry
dc.subject.keywordCheeger isoperimetric constant Gromov hyperbolicity Bounded local geometry Pole
dc.subject.keywordGromov hyperbolicity
dc.subject.keywordPole
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleA note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs
dc.typejournal article
dc.volume.number115
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Note_Isoperimetric_RACSAM.pdf
Size:
296.77 KB
Format:
Adobe Portable Document Format

Collections