Potential barrier mimicking frequent location measurements in quantum Zeno dynamics.

dc.contributor.authorPorras, Miguel A.
dc.contributor.authorGonzalo Fonrodona, Isabel
dc.contributor.authorLuis Aina, Alfredo
dc.date.accessioned2023-06-18T06:52:18Z
dc.date.available2023-06-18T06:52:18Z
dc.date.issued2016-04-07
dc.description©2016 American Physical Society. We acknowledge support from projects of the Spanish Ministerio de Economía y Competitividad No. MTM2012-39101-C02-01 (M.A.P.), No. MTM2015-63914-P (M.A.P.), No. FIS2013-41709-P (M.A.P. and I.G.), and No. FIS2012-35583 (A.L.) and from the Comunidad Autónoma de Madrid research consortium QUITEMAD+ Grant No. S2013/ICE-2801 (A.L.). M.A.P. acknowledges helpful discussions with J. Usera.
dc.description.abstractWe show that quantum Zeno dynamics can be mimicked by the isolated evolution of an unobserved system in an effective potential. Monitoring frequently whether a particle remains in a region of space leads to the same wave-packet dynamics as placing the region on top of a potential barrier and letting the particle evolve on its own, without external couplings. We focus on very frequent but not continuous observation so that the particle abandons the initial region with some finite probability. The height of the barrier relative to the surroundings for a high frequency. of the observations being mimicked is found numerically to be hν/2,where h is Planck's constant.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37529
dc.identifier.citation1. B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977). 2. D. Home and M. A. B. Whitaker, Ann. Phys. (N.Y.) 258, 237 (1997); J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, Nat. Commun. 6, 6811 (2015). 3. T. P. Altenmüller and A. Schenzle, Phys. Rev. A 49, 2016 (1994); S. Pascazio and M. Namiki, ibid. 50, 4582 (1994); H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett. A 199, 27 (1995); A. Venugopalan and R. Ghosh, ibid. 204, 11 (1995); A. Luis and J. Peřina, Phys. Rev. Lett. 76, 4340 (1996). 4. M. Kitano, Opt. Commun. 141, 39 (1997); A. Peres, Am. J. Phys. 48, 931 (1980); K. Yamane, M. Ito, and M. Kitano, ibid. 192, 299 (2001); P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. Kasevich, Ann. N.Y. Acad. Sci. 755, 383 (1995); S. Longhi, Phys. Rev. Lett. 97, 110402 (2006). 5. M. A. Porras, A. Luis, I. Gonzalo, and A. S. Sanz, Phys. Rev. A 84, 052109 (2011); M. A. Porras, A. Luis, and I. Gonzalo, ibid. 88, 052101 (2013). 6. J. M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune, S. Haroche, P. Facchi, and S. Pascazio, Phys. Rev. Lett. 105, 213601 (2010); J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, Phys. Rev. A 86, 032120 (2012); X. Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, J. Phys. B 42, 165507 (2009); Z. C. Shi, Y. Xia, H. Z. Wu, and J. Song, Eur. Phys. J. D 66, 127 (2012). 7. A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, Nat. Phys. 10, 715 (2014). 8. F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S. Cataliotti, F. Caruso, and A. Smerzi, Nat. Commun. 5, 3194 (2014). 9. G. Barontini, L. Hohmann, F. Haas, J. Estéve, and J. Reichel, Science 349, 1317 (2015). 10. P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, Phys. Rev A 65, 012108 (2001); P. Facchi and S. Pascazio, Phys. Rev. Lett. 89, 080401 (2002); J. Phys. A 41, 493001 (2008). 11. L. A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957) [Sov. Phys. JETP 6, 1053 (1958)]; C. Teuscher and D. Hofstadter, Alan Turing: Life and Legacy of a Great Thinker (Springer, Berlin, 2004), p. 54; A. Degasperis, L. Fonda, and G. C. Ghirardi, Nuovo Cimento A 21, 471 (1974). 12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001). 13. M. A. Porras, A. Luis, and I. Gonzalo, Phys. Rev. A 90, 062131 (2014). 14. Supposing Ae^ikΩx + Be^−ikΩx in Ω,Ce^−ikx to the left, and Deikx to the right, a standard procedure [18] yields this result. 15. A. Messiah, Mechanique Quantique (Dunod, Paris, 1964), Vol. 1. 16. M. H. Partovi and R. Blankenbecler, Phys. Rev. Lett. 57, 2887 (1986). 17. P. Busch, in Time in Quantum Mechanics, edited by J. G. Muga, R. Sals, and I. L. Egusquiza (Springer, Berlin, 2008), Vol. 1, Chap. 3, p. 81. 18. C. Cohen Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Vol. 1, p. 72.
dc.identifier.doi10.1103/PhysRevA.93.040101
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.93.040101
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24457
dc.issue.number4
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMTM2012- 39101-C02-01
dc.relation.projectIDMTM2015-63914-P
dc.relation.projectIDFIS2013-41709-P
dc.relation.projectIDFIS2012- 35583
dc.relation.projectIDQUITEMAD+-CM (S2013/ICE- 2801)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptics
dc.subject.keywordPhysics
dc.subject.keywordAtomic
dc.subject.keywordMolecular & Chemical.
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePotential barrier mimicking frequent location measurements in quantum Zeno dynamics.
dc.typejournal article
dc.volume.number93
dspace.entity.typePublication
relation.isAuthorOfPublicationc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication.latestForDiscoveryc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A145libre.pdf
Size:
644.38 KB
Format:
Adobe Portable Document Format
Collections