Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series
Loading...
Download
Official URL
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid
Citation
Abstract
This paper features an analysis of the relationship between the volatility of the Dow Jones Industrial Average (DJIA) Index and a sentiment news series using daily data obtained from the Thomson Reuters News Analytics (TRNA) provided by SIRCA (The Securities Industry Research Centre of the Asia Pacic). The expansion of on-line nancial news sources, such as internet news and social media sources, provides instantaneous access to nancial news. Commercial agencies have started developing their own ltered nancial news feeds, which are used by investors and traders to support their algorithmic trading strategies. In this paper we use a sentiment series, developed by TRNA, to construct a series of daily sentiment scores for Dow Jones Industrial Average (DJIA) stock index component companies. A variety of forms of this measure, namely basic scores, absolute values of the series, squared values of the series, and the rst dierences of the series, are used to estimate three standard volatility models, namely GARCH, EGARCH and GJR. We use these alternative daily DJIA market sentiment scores to examine the relationship between nancial news sentiment scores and the volatility of the DJIA return series. We demonstrate how this calibration of machine ltered news can improve volatility measures.
Description
JEL: C58, G14.