Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smart Patrolling Based on Spatial-Temporal Information Using Machine Learning

dc.contributor.authorGuevara Maldonado, César B.
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-12T14:55:15Z
dc.date.available2024-12-12T14:55:15Z
dc.date.issued2022-11-20
dc.description.abstractWith the aim of improving security in cities and reducing the number of crimes, this research proposes an algorithm that combines artificial intelligence (AI) and machine learning (ML) techniques to generate police patrol routes. Real data on crimes reported in Quito City, Ecuador, during 2017 are used. The algorithm, which consists of four stages, combines spatial and temporal information. First, crimes are grouped around the points with the highest concentration of felonies, and future hotspots are predicted. Then, the probability of crimes committed in any of those areas at a time slot is studied. This information is combined with the spatial way-points to obtain real surveillance routes through a fuzzy decision system, that considers distance and time (computed with the OpenStreetMap API), and probability. Computing time has been analized and routes have been compared with those proposed by an expert. The results prove that using spatial–temporal information allows the design of patrolling routes in an effective way and thus, improves citizen security and decreases spending on police resources.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGuevara, C., & Santos, M. (2022). Smart Patrolling Based on Spatial-Temporal Information Using Machine Learning. Mathematics, 10(22), 4368.
dc.identifier.doihttps://doi.org/10.3390/math10224368
dc.identifier.officialurlhttps://www.mdpi.com/2227-7390/10/22/4368
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112553
dc.issue.number22
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial4368
dc.publisherMdpi
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordSecurity
dc.subject.keywordCrime prediction
dc.subject.keywordPolice patrol routes
dc.subject.keywordMachine learning
dc.subject.keywordArtificial intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSmart Patrolling Based on Spatial-Temporal Information Using Machine Learning
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smart_Patrolling .pdf
Size:
5.65 MB
Format:
Adobe Portable Document Format

Collections